Total: 1
Accurate prediction of multi-agent future trajectories is crucial for autonomous driving systems to make safe and efficient decisions. Trajectory refinement has emerged as a key strategy to enhance prediction accuracy. However, existing refinement methods often overlook the topological relationships between trajectories, which are vital for improving prediction precision. Inspired by braid theory, we propose a novel trajectory refinement approach, Soft-Braid Refiner (SRefiner), guided by the soft-braid topological structure of trajectories using Soft-Braid Attention. Soft-Braid Attention captures spatio-temporal topological relationships between trajectories by considering both spatial proximity and vehicle motion states at "soft intersection points". Additionally, we extend this approach to model interactions between trajectories and lanes, further improving the prediction accuracy. SRefiner is a multi-iteration, multi-agent framework that iteratively refines trajectories, incorporating topological information to enhance interactions within traffic scenarios. SRefiner achieves significant performance improvements over four baseline methods across two datasets, establishing a new state-of-the-art in trajectory refinement.