Yoon_S4M_Boosting_Semi-Supervised_Instance_Segmentation_with_SAM@ICCV2025@CVF

Total: 1

#1 S4M: Boosting Semi-Supervised Instance Segmentation with SAM [PDF] [Copy] [Kimi] [REL]

Authors: Heeji Yoon, Heeseong Shin, Eunbeen Hong, Hyunwook Choi, Hansang Cho, Daun Jeong, Seungryong Kim

Semi-supervised instance segmentation poses challenges due to limited labeled data, causing difficulties in accurately localizing distinct object instances. Current teacher-student frameworks still suffer from performance constraints due to unreliable pseudo-label quality stemming from limited labeled data. While the Segment Anything Model (SAM) offers robust segmentation capabilities at various granularities, directly applying SAM introduces challenges such as class-agnostic predictions and potential over-segmentation. To address these complexities, we carefully integrate SAM into the semi-supervised instance segmentation framework, developing a novel distillation method that effectively captures the precise localization capabilities of SAM without compromising semantic recognition. Furthermore, we incorporate pseudo-label refinement as well as a specialized data augmentation with the refined pseudo-labels, resulting in superior performance. We establish state-of-the-art performance, and provide comprehensive experiments and ablation studies to validate the effectiveness of our proposed approach.

Subject: ICCV.2025 - Poster