Total: 1
With the emergence of byte-addressable Persistent Memory(PM), a number of works have recently addressed the problem of how to implement persistent transactional memory using off-the-shelf hardware transactional memory systems. Using Intel Optane DC PM we show, for the first time in the literature, experimental results highlighting several scalability bottlenecks of state of the art approaches, which so far have been evaluated only via PM emulation. We tackle these limitations by proposing SPHT (ScalablePersistent Hardware Transactions), an innovative PersistentTransactional Memory that exploits a set of novel mechanisms aimed at enhancing scalability both during transaction processing and recovery. We show that SPHT enhances through-put by up to 2.6x on STAMP and achieve speedups of 2.8x in the log replay phase vs state of the art solutions.