Total: 1
Recently, federated multi-view clustering (FedMVC) has gained attention for its ability to mine complementary clustering structures from multiple clients without exposing private data. Existing methods mainly focus on addressing the feature heterogeneity problem brought by views on different clients and mitigating it using shared client information. Although these methods have achieved performance improvements, the information they choose to share, such as model parameters or intermediate outputs, inevitably raises privacy concerns. In this paper, we propose an Effective and Secure Federated Multi-view Clustering method, ESFMC, to alleviate the dilemma between privacy protection and performance improvement. This method leverages the information-theoretic perspective to split the features extracted locally by clients, retaining sensitive information locally and only sharing features that are highly relevant to the task. This can be viewed as a form of privacy-preserving information sharing, reducing privacy risks for clients while ensuring that the server can mine high-quality global clustering structures. Theoretical analysis and extensive experiments demonstrate that the proposed method more effectively mitigates the trade-off between privacy protection and performance improvement compared to state-of-the-art methods.