fDzzshfELg@OpenReview

Total: 1

#1 MATS: An Audio Language Model under Text-only Supervision [PDF] [Copy] [Kimi] [REL]

Authors: Wen Wang, Ruibing Hou, Hong Chang, Shiguang Shan, Xilin Chen

Large audio-language models (LALMs), built upon powerful Large Language Models (LLMs), have exhibited remarkable audio comprehension and reasoning capabilities. However, the training of LALMs demands a large corpus of audio-language pairs, which requires substantial costs in both data collection and training resources. In this paper, we propose **MATS**, an audio-language multimodal LLM designed to handle **M**ultiple **A**udio task using solely **T**ext-only **S**upervision. By leveraging pre-trained audio-language alignment models such as CLAP, we develop a text-only training strategy that projects the shared audio-language latent space into LLM latent space, endowing the LLM with audio comprehension capabilities without relying on audio data during training. To further bridge the modality gap between audio and language embeddings within CLAP, we propose the **S**trongly-rel**a**ted **n**oisy **t**ext with **a**udio (**Santa**) mechanism. Santa maps audio embeddings into CLAP language embedding space while preserving essential information from the audio input. Extensive experiments demonstrate that MATS, despite being trained exclusively on text data, achieves competitive performance compared to recent LALMs trained on large-scale audio-language pairs. The code is publicly available in [https://github.com/wangwen-banban/MATS](https://github.com/wangwen-banban/MATS)

Subject: ICML.2025 - Poster