Total: 1
Link prediction---a task of distinguishing actual hidden edges from random unconnected node pairs---is one of the quintessential tasks in graph machine learning. Despite being widely accepted as a universal benchmark and a downstream task for representation learning, the link prediction benchmark's validity has rarely been questioned. Here, we show that the common edge sampling procedure in the link prediction task has an implicit bias toward high-degree nodes. This produces a highly skewed evaluation that favors methods overly dependent on node degree. In fact a ``null'' link prediction method based solely on node degree can yield nearly optimal performance in this setting. We propose a degree-corrected link prediction benchmark that offers a more reasonable assessment and better aligns with the performance on the recommendation task. Finally, we demonstrate that the degree-corrected benchmark can more effectively train graph machine-learning models by reducing overfitting to node degrees and facilitating the learning of relevant structures in graphs.