gmFeso9sXJ@OpenReview

Total: 1

#1 Enhancing Ligand Validity and Affinity in Structure-Based Drug Design with Multi-Reward Optimization [PDF1] [Copy] [Kimi] [REL]

Authors: Seungbeom Lee, Munsun Jo, Jungseul Ok, Dongwoo Kim

Deep learning-based Structure-based drug design aims to generate ligand molecules with desirable properties for protein targets. While existing models have demonstrated competitive performance in generating ligand molecules, they primarily focus on learning the chemical distribution of training datasets, often lacking effective steerability to ensure the desired chemical quality of generated molecules. To address this issue, we propose a multi-reward optimization framework that fine-tunes generative models for attributes, such as binding affinity, validity, and drug-likeness, together. Specifically, we derive direct preference optimization for a Bayesian flow network, used as a backbone for molecule generation, and integrate a reward normalization scheme to adopt multiple objectives. Experimental results show that our method generates more realistic ligands than baseline models while achieving higher binding affinity, expanding the Pareto front empirically observed in previous studies.

Subject: ICML.2025 - Poster