hEaiFYEx3a@OpenReview

Total: 1

#1 Data-Driven Selection of Instrumental Variables for Additive Nonlinear, Constant Effects Models [PDF] [Copy] [Kimi] [REL]

Authors: Xichen Guo, Feng Xie, Yan Zeng, Hao Zhang, zhi geng

We consider the problem of selecting instrumental variables from observational data, a fundamental challenge in causal inference. Existing methods mostly focus on additive linear, constant effects models, limiting their applicability in complex real-world scenarios.In this paper, we tackle a more general and challenging setting: the additive non-linear, constant effects model. We first propose a novel testable condition, termed the Cross Auxiliary-based independent Test (CAT) condition, for selecting the valid IV set. We show that this condition is both necessary and sufficient for identifying valid instrumental variable sets within such a model under milder assumptions. Building on this condition, we develop a practical algorithm for selecting the set of valid instrumental variables. Extensive experiments on both synthetic and two real-world datasets demonstrate the effectiveness and robustness of our proposed approach, highlighting its potential for broader applications in causal analysis.

Subject: ICML.2025 - Poster