ia4WUCwHA9@OpenReview

Total: 1

#1 Theoretical guarantees in KL for Diffusion Flow Matching [PDF3] [Copy] [Kimi] [REL]

Authors: Marta Gentiloni Silveri, Alain Oliviero Durmus, Giovanni Conforti

Flow Matching (FM) (also referred to as stochastic interpolants or rectified flows) stands out as a class of generative models that aims to bridge in finite time the target distribution $\nu^\star$ with an auxiliary distribution $\mu$ leveraging a fixed coupling $\pi$ and a bridge which can either be deterministic or stochastic. These two ingredients define a path measure which can then be approximated by learning the drift of its Markovian projection. The main contribution of this paper is to provide relatively mild assumption on $\nu^\star$, $\mu$ and $\pi$ to obtain non-asymptotics guarantees for Diffusion Flow Matching (DFM) models using as bridge the conditional distribution associated with the Brownian motion. More precisely, it establishes bounds on the Kullback-Leibler divergence between the target distribution and the one generated by such DFM models under moment conditions on the score of $\nu^\star$, $\mu$ and $\pi$, and a standard $\mathrm{L}^2$-drift-approximation error assumption.

Subject: NeurIPS.2024 - Poster