Total: 1
Speculative decoding has become a widely adopted as an effective technique for lossless inference acceleration when deploying large language models (LLMs). While on-the-fly self-speculative methods offer seamless integration and broad utility, they often fall short of the speed gains achieved by methods relying on specialized training. Cascading a hierarchy of draft models promises further acceleration and flexibility, but the high cost of training multiple models has limited its practical application. In this paper, we propose a novel Cascade Adaptive Self-Speculative Decoding (CAS-Spec) method which constructs speculative draft models by leveraging dynamically switchable inference acceleration (DSIA) strategies, including layer sparsity and activation quantization. Furthermore, traditional vertical and horizontal cascade algorithms are inefficient when applied to self-speculative decoding methods. We introduce a Dynamic Tree Cascade (DyTC) algorithm that adaptively routes the multi-level draft models and assigns the draft lengths, based on the heuristics of acceptance rates and latency prediction. Our CAS-Spec method achieves state-of-the-art acceleration compared to existing on-the-fly speculative decoding methods, with an average speedup from $1.1\times$ to $2.3\times$ over autoregressive decoding across various LLMs and datasets. DyTC improves the average speedup by $47$\% and $48$\% over cascade-based baseline and tree-based baseline algorithms, respectively. CAS-Spec can be easily integrated into most existing LLMs and holds promising potential for further acceleration as self-speculative decoding techniques continue to evolve.