Total: 1
Dynamic pricing algorithms typically assume continuous price variables, which may not reflect real-world scenarios where prices are often discrete. This paper demonstrates that leveraging discrete price information within a semi-parametric model can substantially improve performance, depending on the size of the support set of the price variable relative to the time horizon. Specifically, we propose a novel semi-parametric contextual dynamic pricing algorithm, namely BayesCoxCP, based on a Bayesian approach to the Cox proportional hazards model. Our theoretical analysis establishes high-probability regret bounds that adapt to the sparsity level $\gamma$, proving that our algorithm achieves a regret upper bound of $\widetilde{O}(T^{(1+\gamma)/2}+\sqrt{dT})$ for $\gamma < 1/3$ and $\widetilde{O}(T^{2/3}+\sqrt{dT})$ for $\gamma \geq 1/3$, where $\gamma$ represents the sparsity of the price grid relative to the time horizon $T$. Through numerical experiments, we demonstrate that our proposed algorithm significantly outperforms an existing method, particularly in scenarios with sparse discrete price points.