Total: 1
Quantifying the elemental composition of a material is a general scientific challenge with broad relevance to environmental sustainability. Existing techniques for the measurement of atomic abundances generally require laboratory conditions and expensive equipment. As a result, they cannot be deployed *in situ* without significant capital investment, limiting their proliferation. Measurement techniques based on nuclear magnetic resonance (NMR) hold promise in this setting due to their applicability across the periodic table, their non-destructive manipulation of samples, and their amenability to *in silico* optimization. In this work, we learn policies to modulate NMR pulses for rapid atomic abundance quantification. Our approach involves three inter-operating agents which (1) rapidly align nuclear spins for measurement, (2) quickly force relaxation to equilibrium, and (3) toggle control between agents (1) and (2) to minimize overall measurement time. To demonstrate this technique, we consider a specific use case of low-magnetic-field carbon-13 quantification for low-cost, portable analysis of foodstuffs and soils. We find significant performance improvements relative to traditional NMR pulse sequencing, and discuss limitations on the applicability of this approach.