ul5mlXrLZb@OpenReview

Total: 1

#1 OOD Detection with Relative Angles [PDF1] [Copy] [Kimi] [REL]

Authors: Berker Demirel, Marco Fumero, Francesco Locatello

Deep learning systems deployed in real-world applications often encounter data that is different from their in-distribution (ID). A reliable model should ideally abstain from making decisions in this out-of-distribution (OOD) setting. Existing state-of-the-art methods primarily focus on feature distances, such as k-th nearest neighbors and distances to decision boundaries, either overlooking or ineffectively using in-distribution statistics. In this work, we propose a novel angle-based metric for OOD detection that is computed relative to the in-distribution structure. We demonstrate that the angles between feature representations and decision boundaries, viewed from the mean of in-distribution features, serve as an effective discriminative factor between ID and OOD data. We evaluate our method on nine ImageNet-pretrained models. Our approach achieves the lowest FPR in 5 out of 9 ImageNet models, obtains the best average FPR overall, and consistently ranking among the top 3 across all evaluated models. Furthermore, we highlight the benefits of contrastive representations by showing strong performance with ResNet SCL and CLIP architectures. Finally, we demonstrate that the scale-invariant nature of our score enables an ensemble strategy via simple score summation.

Subject: NeurIPS.2025 - Poster