Total: 1
Multivariate time series (MTS) classification has attracted increasing attention across various domains. Existing methods either decompose MTS into separate univariate series, ignoring inter-variable dependencies, or jointly model all variables, which may lead to over-smoothing and loss of semantic structure. These limitations become particularly pronounced when dealing with complex and heterogeneous variable types. To address these challenges, we propose SwinGroupNet (SGN), which explores a novel perspective for constructing variable interaction and temporal dependency. Specifically, SGN processes multi-scale time series using (1) Variable Group Embedding (VGE), which partitions variables into groups and performs independent group-wise embedding; (2) Multi-Scale Group Window Mixing (MGWM), which reconstructs variable interactions by modeling both intra-group and inter-group dependencies while extracting multi-scale temporal features; and (3) Periodic Window Shifting and Merging (PWSM), which exploits inherent periodic patterns to enable hierarchical temporal interaction and feature aggregation. Extensive experiments on diverse benchmark datasets from multiple domains demonstrate that SGN consistently achieves state-of-the-art performance, with an average improvement of 4.2% over existing methods. We release the source code at https://anonymous.4open.science/r/SGN.