Total: 1
Type inference for dynamic languages like Python is a persistent challenge in software engineering. While large language models (LLMs) have shown promise in code understanding, their type inference capabilities remain underexplored. We introduce `TypyBench`, a benchmark designed to evaluate LLMs' type inference across entire Python repositories. `TypyBench` features two novel metrics: `TypeSim`, which captures nuanced semantic relationships between predicted and ground truth types, and `TypeCheck`, which assesses type consistency across codebases. Our evaluation of various LLMs on a curated dataset of 50 high-quality Python repositories reveals that, although LLMs achieve decent `TypeSim` scores, they struggle with complex nested types and exhibit significant type consistency errors. These findings suggest that future research should shift focus from improving type similarity to addressing repository-level consistency. `TypyBench` provides a foundation for this new direction, offering insights into model performance across different type complexities and usage contexts. Our code and data are available at \href{https://github.com/typybench/typybench}.