yhd2kHHNtB@OpenReview

Total: 1

#1 Avoiding Undesired Future with Minimal Cost in Non-Stationary Environments [PDF] [Copy] [Kimi] [REL]

Authors: Wen-Bo Du, Tian Qin, Tian-Zuo Wang, Zhi-Hua Zhou

Machine learning (ML) has achieved remarkable success in prediction tasks. In many real-world scenarios, rather than solely predicting an outcome using an ML model, the crucial concern is how to make decisions to prevent the occurrence of undesired outcomes, known as the *avoiding undesired future (AUF)* problem. To this end, a new framework called *rehearsal learning* has been proposed recently, which works effectively in stationary environments by leveraging the influence relations among variables. In real tasks, however, the environments are usually non-stationary, where the influence relations may be *dynamic*, leading to the failure of AUF by the existing method. In this paper, we introduce a novel sequential methodology that effectively updates the estimates of dynamic influence relations, which are crucial for rehearsal learning to prevent undesired outcomes in non-stationary environments. Meanwhile, we take the cost of decision actions into account and provide the formulation of AUF problem with minimal action cost under non-stationarity. We prove that in linear Gaussian cases, the problem can be transformed into the well-studied convex quadratically constrained quadratic program (QCQP). In this way, we establish the first polynomial-time rehearsal-based approach for addressing the AUF problem. Theoretical and experimental results validate the effectiveness and efficiency of our method under certain circumstances.

Subject: NeurIPS.2024 - Poster