Total: 1
Despite the success of current multimodal learning at scale, its susceptibility to data poisoning attacks poses security concerns in critical applications. Attacker can manipulate model behavior by injecting maliciously crafted yet minute instances into the training set, stealthily mismatching distinct concepts. Recent studies have manifested the vulnerability by poisoning multimodal tasks such as Text-Image Retrieval (TIR) and Visual Question Answering (VQA). However, the current attacking method only rely on random choice of concepts for misassociation and random instance selections for injecting the poisoning noise, which often achieves the suboptimal effect and even risks failure due to the dilution of poisons by the large number of benign instances. This study introduces MP-Nav (Multimodal Poison Navigator), a plug-and-play module designed to evaluate and even enhance data poisoning attacks against multimodal models. MP-Nav operates at both the concept and instance levels, identifying semantically similar concept pairs and selecting robust instances to maximize the attack efficacy. The experiments corroborate MP-Nav can significantly improve the efficacy of state-of-the-art data poisoning attacks such as AtoB and ShadowCast in multimodal tasks, and maintain model utility across diverse datasets. Notably, this study underscores the vulnerabilities of multimodal models and calls for the counterpart defenses.