EMNLP.2021 - Main

Total: 847

#1 AligNART: Non-autoregressive Neural Machine Translation by Jointly Learning to Estimate Alignment and Translate [PDF1] [Copy] [Kimi2]

Authors: Jongyoon Song ; Sungwon Kim ; Sungroh Yoon

Non-autoregressive neural machine translation (NART) models suffer from the multi-modality problem which causes translation inconsistency such as token repetition. Most recent approaches have attempted to solve this problem by implicitly modeling dependencies between outputs. In this paper, we introduce AligNART, which leverages full alignment information to explicitly reduce the modality of the target distribution. AligNART divides the machine translation task into (i) alignment estimation and (ii) translation with aligned decoder inputs, guiding the decoder to focus on simplified one-to-one translation. To alleviate the alignment estimation problem, we further propose a novel alignment decomposition method. Our experiments show that AligNART outperforms previous non-iterative NART models that focus on explicit modality reduction on WMT14 En↔De and WMT16 Ro→En. Furthermore, AligNART achieves BLEU scores comparable to those of the state-of-the-art connectionist temporal classification based models on WMT14 En↔De. We also observe that AligNART effectively addresses the token repetition problem even without sequence-level knowledge distillation.

#2 Zero-Shot Cross-Lingual Transfer of Neural Machine Translation with Multilingual Pretrained Encoders [PDF] [Copy] [Kimi1]

Authors: Guanhua Chen ; Shuming Ma ; Yun Chen ; Li Dong ; Dongdong Zhang ; Jia Pan ; Wenping Wang ; Furu Wei

Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE can help to facilitate the cross-lingual transferability of NMT model. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with parallel dataset of only one language pair and an off-the-shelf MPE, then it is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. SixT leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. Using this method, SixT significantly outperforms mBART, a pretrained multilingual encoder-decoder model explicitly designed for NMT, with an average improvement of 7.1 BLEU on zero-shot any-to-English test sets across 14 source languages. Furthermore, with much less training computation cost and training data, our model achieves better performance on 15 any-to-English test sets than CRISS and m2m-100, two strong multilingual NMT baselines.

#3 ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora [PDF] [Copy] [Kimi1]

Authors: Xuan Ouyang ; Shuohuan Wang ; Chao Pang ; Yu Sun ; Hao Tian ; Hua Wu ; Haifeng Wang

Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose Ernie-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that Ernie-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. The codes and pre-trained models will be made publicly available.

#4 Cross Attention Augmented Transducer Networks for Simultaneous Translation [PDF] [Copy] [Kimi1]

Authors: Dan Liu ; Mengge Du ; Xiaoxi Li ; Ya Li ; Enhong Chen

This paper proposes a novel architecture, Cross Attention Augmented Transducer (CAAT), for simultaneous translation. The framework aims to jointly optimize the policy and translation models. To effectively consider all possible READ-WRITE simultaneous translation action paths, we adapt the online automatic speech recognition (ASR) model, RNN-T, but remove the strong monotonic constraint, which is critical for the translation task to consider reordering. To make CAAT work, we introduce a novel latency loss whose expectation can be optimized by a forward-backward algorithm. We implement CAAT with Transformer while the general CAAT architecture can also be implemented with other attention-based encoder-decoder frameworks. Experiments on both speech-to-text (S2T) and text-to-text (T2T) simultaneous translation tasks show that CAAT achieves significantly better latency-quality trade-offs compared to the state-of-the-art simultaneous translation approaches.

#5 Translating Headers of Tabular Data: A Pilot Study of Schema Translation [PDF] [Copy] [Kimi1]

Authors: Kunrui Zhu ; Yan Gao ; Jiaqi Guo ; Jian-Guang Lou

Schema translation is the task of automatically translating headers of tabular data from one language to another. High-quality schema translation plays an important role in cross-lingual table searching, understanding and analysis. Despite its importance, schema translation is not well studied in the community, and state-of-the-art neural machine translation models cannot work well on this task because of two intrinsic differences between plain text and tabular data: morphological difference and context difference. To facilitate the research study, we construct the first parallel dataset for schema translation, which consists of 3,158 tables with 11,979 headers written in 6 different languages, including English, Chinese, French, German, Spanish, and Japanese. Also, we propose the first schema translation model called CAST, which is a header-to-header neural machine translation model augmented with schema context. Specifically, we model a target header and its context as a directed graph to represent their entity types and relations. Then CAST encodes the graph with a relational-aware transformer and uses another transformer to decode the header in the target language. Experiments on our dataset demonstrate that CAST significantly outperforms state-of-the-art neural machine translation models. Our dataset will be released at https://github.com/microsoft/ContextualSP.

#6 Towards Making the Most of Dialogue Characteristics for Neural Chat Translation [PDF] [Copy] [Kimi1]

Authors: Yunlong Liang ; Chulun Zhou ; Fandong Meng ; Jinan Xu ; Yufeng Chen ; Jinsong Su ; Jie Zhou

Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in current NCT models because the inherent dialogue characteristics of chat, such as dialogue coherence and speaker personality, are neglected. In this paper, we propose to promote the chat translation by introducing the modeling of dialogue characteristics into the NCT model. To this end, we design four auxiliary tasks including monolingual response generation, cross-lingual response generation, next utterance discrimination, and speaker identification. Together with the main chat translation task, we optimize the enhanced NCT model through the training objectives of all these tasks. By this means, the NCT model can be enhanced by capturing the inherent dialogue characteristics, thus generating more coherent and speaker-relevant translations. Comprehensive experiments on four language directions (English<->German and English<->Chinese) verify the effectiveness and superiority of the proposed approach.

#7 Low-Resource Dialogue Summarization with Domain-Agnostic Multi-Source Pretraining [PDF1] [Copy] [Kimi1]

Authors: Yicheng Zou ; Bolin Zhu ; Xingwu Hu ; Tao Gui ; Qi Zhang

With the rapid increase in the volume of dialogue data from daily life, there is a growing demand for dialogue summarization. Unfortunately, training a large summarization model is generally infeasible due to the inadequacy of dialogue data with annotated summaries. Most existing works for low-resource dialogue summarization directly pretrain models in other domains, e.g., the news domain, but they generally neglect the huge difference between dialogues and conventional articles. To bridge the gap between out-of-domain pretraining and in-domain fine-tuning, in this work, we propose a multi-source pretraining paradigm to better leverage the external summary data. Specifically, we exploit large-scale in-domain non-summary data to separately pretrain the dialogue encoder and the summary decoder. The combined encoder-decoder model is then pretrained on the out-of-domain summary data using adversarial critics, aiming to facilitate domain-agnostic summarization. The experimental results on two public datasets show that with only limited training data, our approach achieves competitive performance and generalizes well in different dialogue scenarios.

#8 Controllable Neural Dialogue Summarization with Personal Named Entity Planning [PDF] [Copy] [Kimi1]

Authors: Zhengyuan Liu ; Nancy Chen

In this paper, we propose a controllable neural generation framework that can flexibly guide dialogue summarization with personal named entity planning. The conditional sequences are modulated to decide what types of information or what perspective to focus on when forming summaries to tackle the under-constrained problem in summarization tasks. This framework supports two types of use cases: (1) Comprehensive Perspective, which is a general-purpose case with no user-preference specified, considering summary points from all conversational interlocutors and all mentioned persons; (2) Focus Perspective, positioning the summary based on a user-specified personal named entity, which could be one of the interlocutors or one of the persons mentioned in the conversation. During training, we exploit occurrence planning of personal named entities and coreference information to improve temporal coherence and to minimize hallucination in neural generation. Experimental results show that our proposed framework generates fluent and factually consistent summaries under various planning controls using both objective metrics and human evaluations.

#9 Fine-grained Factual Consistency Assessment for Abstractive Summarization Models [PDF] [Copy] [Kimi1]

Authors: Sen Zhang ; Jianwei Niu ; Chuyuan Wei

Factual inconsistencies existed in the output of abstractive summarization models with original documents are frequently presented. Fact consistency assessment requires the reasoning capability to find subtle clues to identify whether a model-generated summary is consistent with the original document. This paper proposes a fine-grained two-stage Fact Consistency assessment framework for Summarization models (SumFC). Given a document and a summary sentence, in the first stage, SumFC selects the top-K most relevant sentences with the summary sentence from the document. In the second stage, the model performs fine-grained consistency reasoning at the sentence level, and then aggregates all sentences’ consistency scores to obtain the final assessment result. We get the training data pairs by data synthesis and adopt contrastive loss of data pairs to help the model identify subtle cues. Experiment results show that SumFC has made a significant improvement over the previous state-of-the-art methods. Our experiments also indicate that SumFC distinguishes detailed differences better.

#10 Decision-Focused Summarization [PDF] [Copy] [Kimi2]

Authors: Chao-Chun Hsu ; Chenhao Tan

Relevance in summarization is typically de- fined based on textual information alone, without incorporating insights about a particular decision. As a result, to support risk analysis of pancreatic cancer, summaries of medical notes may include irrelevant information such as a knee injury. We propose a novel problem, decision-focused summarization, where the goal is to summarize relevant information for a decision. We leverage a predictive model that makes the decision based on the full text to provide valuable insights on how a decision can be inferred from text. To build a summary, we then select representative sentences that lead to similar model decisions as using the full text while accounting for textual non-redundancy. To evaluate our method (DecSum), we build a testbed where the task is to summarize the first ten reviews of a restaurant in support of predicting its future rating on Yelp. DecSum substantially outperforms text-only summarization methods and model-based explanation methods in decision faithfulness and representativeness. We further demonstrate that DecSum is the only method that enables humans to outperform random chance in predicting which restaurant will be better rated in the future.

#11 Multiplex Graph Neural Network for Extractive Text Summarization [PDF] [Copy] [Kimi1]

Authors: Baoyu Jing ; Zeyu You ; Tao Yang ; Wei Fan ; Hanghang Tong

Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged graph neural networks to capture the inter-sentential relationship (e.g., the discourse graph) within the documents to learn contextual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity and natural connection relationships), nor model intra-sentential relationships (e.g, semantic similarity and syntactic relationship among words). To address these problems, we propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate effectiveness of our method.

#12 A Thorough Evaluation of Task-Specific Pretraining for Summarization [PDF] [Copy] [Kimi1]

Authors: Sascha Rothe ; Joshua Maynez ; Shashi Narayan

Task-agnostic pretraining objectives like masked language models or corrupted span prediction are applicable to a wide range of NLP downstream tasks (Raffel et al.,2019), but are outperformed by task-specific pretraining objectives like predicting extracted gap sentences on summarization (Zhang et al.,2020). We compare three summarization specific pretraining objectives with the task agnostic corrupted span prediction pretraining in controlled study. We also extend our study to a low resource and zero shot setup, to understand how many training examples are needed in order to ablate the task-specific pretraining without quality loss. Our results show that task-agnostic pretraining is sufficient for most cases which hopefully reduces the need for costly task-specific pretraining. We also report new state-of-the-art number for two summarization task using a T5 model with 11 billion parameters and an optimal beam search length penalty.

#13 HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text Extractive Summarization [PDF] [Copy] [Kimi1]

Authors: Ye Liu ; Jianguo Zhang ; Yao Wan ; Congying Xia ; Lifang He ; Philip Yu

To capture the semantic graph structure from raw text, most existing summarization approaches are built on GNNs with a pre-trained model. However, these methods suffer from cumbersome procedures and inefficient computations for long-text documents. To mitigate these issues, this paper proposes HetFormer, a Transformer-based pre-trained model with multi-granularity sparse attentions for long-text extractive summarization. Specifically, we model different types of semantic nodes in raw text as a potential heterogeneous graph and directly learn heterogeneous relationships (edges) among nodes by Transformer. Extensive experiments on both single- and multi-document summarization tasks show that HetFormer achieves state-of-the-art performance in Rouge F1 while using less memory and fewer parameters.

#14 Unsupervised Keyphrase Extraction by Jointly Modeling Local and Global Context [PDF] [Copy] [Kimi1]

Authors: Xinnian Liang ; Shuangzhi Wu ; Mu Li ; Zhoujun Li

Embedding based methods are widely used for unsupervised keyphrase extraction (UKE) tasks. Generally, these methods simply calculate similarities between phrase embeddings and document embedding, which is insufficient to capture different context for a more effective UKE model. In this paper, we propose a novel method for UKE, where local and global contexts are jointly modeled. From a global view, we calculate the similarity between a certain phrase and the whole document in the vector space as transitional embedding based models do. In terms of the local view, we first build a graph structure based on the document where phrases are regarded as vertices and the edges are similarities between vertices. Then, we proposed a new centrality computation method to capture local salient information based on the graph structure. Finally, we further combine the modeling of global and local context for ranking. We evaluate our models on three public benchmarks (Inspec, DUC 2001, SemEval 2010) and compare with existing state-of-the-art models. The results show that our model outperforms most models while generalizing better on input documents with different domains and length. Additional ablation study shows that both the local and global information is crucial for unsupervised keyphrase extraction tasks.

#15 Distantly Supervised Relation Extraction using Multi-Layer Revision Network and Confidence-based Multi-Instance Learning [PDF] [Copy] [Kimi1]

Authors: Xiangyu Lin ; Tianyi Liu ; Weijia Jia ; Zhiguo Gong

Distantly supervised relation extraction is widely used in the construction of knowledge bases due to its high efficiency. However, the automatically obtained instances are of low quality with numerous irrelevant words. In addition, the strong assumption of distant supervision leads to the existence of noisy sentences in the sentence bags. In this paper, we propose a novel Multi-Layer Revision Network (MLRN) which alleviates the effects of word-level noise by emphasizing inner-sentence correlations before extracting relevant information within sentences. Then, we devise a balanced and noise-resistant Confidence-based Multi-Instance Learning (CMIL) method to filter out noisy sentences as well as assign proper weights to relevant ones. Extensive experiments on two New York Times (NYT) datasets demonstrate that our approach achieves significant improvements over the baselines.

#16 Logic-level Evidence Retrieval and Graph-based Verification Network for Table-based Fact Verification [PDF] [Copy] [Kimi1]

Authors: Qi Shi ; Yu Zhang ; Qingyu Yin ; Ting Liu

Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that contain rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.

#17 A Partition Filter Network for Joint Entity and Relation Extraction [PDF1] [Copy] [Kimi1]

Authors: Zhiheng Yan ; Chong Zhang ; Jinlan Fu ; Qi Zhang ; Zhongyu Wei

In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or they encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.

#18 TEBNER: Domain Specific Named Entity Recognition with Type Expanded Boundary-aware Network [PDF] [Copy] [Kimi1]

Authors: Zheng Fang ; Yanan Cao ; Tai Li ; Ruipeng Jia ; Fang Fang ; Yanmin Shang ; Yuhai Lu

To alleviate label scarcity in Named Entity Recognition (NER) task, distantly supervised NER methods are widely applied to automatically label data and identify entities. Although the human effort is reduced, the generated incomplete and noisy annotations pose new challenges for learning effective neural models. In this paper, we propose a novel dictionary extension method which extracts new entities through the type expanded model. Moreover, we design a multi-granularity boundary-aware network which detects entity boundaries from both local and global perspectives. We conduct experiments on different types of datasets, the results show that our model outperforms previous state-of-the-art distantly supervised systems and even surpasses the supervised models.

#19 Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge [PDF] [Copy] [Kimi1]

Authors: Bin Liang ; Hang Su ; Rongdi Yin ; Lin Gui ; Min Yang ; Qin Zhao ; Xiaoqi Yu ; Ruifeng Xu

In this paper, we investigate the Aspect Category Sentiment Analysis (ACSA) task from a novel perspective by exploring a Beta Distribution guided aspect-aware graph construction based on external knowledge. That is, we are no longer entangled about how to laboriously search the sentiment clues for coarse-grained aspects from the context, but how to preferably find the words highly related to the aspects in the context and determine their importance based on the public knowledge base. In this way, the contextual sentiment clues can be explicitly tracked in ACSA for the aspects in the light of these aspect-related words. To be specific, we first regard each aspect as a pivot to derive aspect-aware words that are highly related to the aspect from external affective commonsense knowledge. Then, we employ Beta Distribution to educe the aspect-aware weight, which reflects the importance to the aspect, for each aspect-aware word. Afterward, the aspect-aware words are served as the substitutes of the coarse-grained aspect to construct graphs for leveraging the aspect-related contextual sentiment dependencies in ACSA. Experiments on 6 benchmark datasets show that our approach significantly outperforms the state-of-the-art baseline methods.

#20 DILBERT: Customized Pre-Training for Domain Adaptation with Category Shift, with an Application to Aspect Extraction [PDF] [Copy] [Kimi1]

Authors: Entony Lekhtman ; Yftah Ziser ; Roi Reichart

The rise of pre-trained language models has yielded substantial progress in the vast majority of Natural Language Processing (NLP) tasks. However, a generic approach towards the pre-training procedure can naturally be sub-optimal in some cases. Particularly, fine-tuning a pre-trained language model on a source domain and then applying it to a different target domain, results in a sharp performance decline of the eventual classifier for many source-target domain pairs. Moreover, in some NLP tasks, the output categories substantially differ between domains, making adaptation even more challenging. This, for example, happens in the task of aspect extraction, where the aspects of interest of reviews of, e.g., restaurants or electronic devices may be very different. This paper presents a new fine-tuning scheme for BERT, which aims to address the above challenges. We name this scheme DILBERT: Domain Invariant Learning with BERT, and customize it for aspect extraction in the unsupervised domain adaptation setting. DILBERT harnesses the categorical information of both the source and the target domains to guide the pre-training process towards a more domain and category invariant representation, thus closing the gap between the domains. We show that DILBERT yields substantial improvements over state-of-the-art baselines while using a fraction of the unlabeled data, particularly in more challenging domain adaptation setups.

#21 Improving Multimodal fusion via Mutual Dependency Maximisation [PDF] [Copy] [Kimi1]

Authors: Pierre Colombo ; Emile Chapuis ; Matthieu Labeau ; Chloé Clavel

Multimodal sentiment analysis is a trending area of research, and multimodal fusion is one of its most active topic. Acknowledging humans communicate through a variety of channels (i.e visual, acoustic, linguistic), multimodal systems aim at integrating different unimodal representations into a synthetic one. So far, a consequent effort has been made on developing complex architectures allowing the fusion of these modalities. However, such systems are mainly trained by minimising simple losses such as L1 or cross-entropy. In this work, we investigate unexplored penalties and propose a set of new objectives that measure the dependency between modalities. We demonstrate that our new penalties lead to a consistent improvement (up to 4.3 on accuracy) across a large variety of state-of-the-art models on two well-known sentiment analysis datasets: CMU-MOSI and CMU-MOSEI. Our method not only achieves a new SOTA on both datasets but also produces representations that are more robust to modality drops. Finally, a by-product of our methods includes a statistical network which can be used to interpret the high dimensional representations learnt by the model.

#22 Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training [PDF] [Copy] [Kimi1]

Authors: Zhengyan Li ; Yicheng Zou ; Chong Zhang ; Qi Zhang ; Zhongyu Wei

Aspect-based sentiment analysis aims to identify the sentiment polarity of a specific aspect in product reviews. We notice that about 30% of reviews do not contain obvious opinion words, but still convey clear human-aware sentiment orientation, which is known as implicit sentiment. However, recent neural network-based approaches paid little attention to implicit sentiment entailed in the reviews. To overcome this issue, we adopt Supervised Contrastive Pre-training on large-scale sentiment-annotated corpora retrieved from in-domain language resources. By aligning the representation of implicit sentiment expressions to those with the same sentiment label, the pre-training process leads to better capture of both implicit and explicit sentiment orientation towards aspects in reviews. Experimental results show that our method achieves state-of-the-art performance on SemEval2014 benchmarks, and comprehensive analysis validates its effectiveness on learning implicit sentiment.

#23 Progressive Self-Training with Discriminator for Aspect Term Extraction [PDF] [Copy] [Kimi1]

Authors: Qianlong Wang ; Zhiyuan Wen ; Qin Zhao ; Min Yang ; Ruifeng Xu

Aspect term extraction aims to extract aspect terms from a review sentence that users have expressed opinions on. One of the remaining challenges for aspect term extraction resides in the lack of sufficient annotated data. While self-training is potentially an effective method to address this issue, the pseudo-labels it yields on unlabeled data could induce noise. In this paper, we use two means to alleviate the noise in the pseudo-labels. One is that inspired by the curriculum learning, we refine the conventional self-training to progressive self-training. Specifically, the base model infers pseudo-labels on a progressive subset at each iteration, where samples in the subset become harder and more numerous as the iteration proceeds. The other is that we use a discriminator to filter the noisy pseudo-labels. Experimental results on four SemEval datasets show that our model significantly outperforms the previous baselines and achieves state-of-the-art performance.

#24 Reinforced Counterfactual Data Augmentation for Dual Sentiment Classification [PDF] [Copy] [Kimi1]

Authors: Hao Chen ; Rui Xia ; Jianfei Yu

Data augmentation and adversarial perturbation approaches have recently achieved promising results in solving the over-fitting problem in many natural language processing (NLP) tasks including sentiment classification. However, existing studies aimed to improve the generalization ability by augmenting the training data with synonymous examples or adding random noises to word embeddings, which cannot address the spurious association problem. In this work, we propose an end-to-end reinforcement learning framework, which jointly performs counterfactual data generation and dual sentiment classification. Our approach has three characteristics:1) the generator automatically generates massive and diverse antonymous sentences; 2) the discriminator contains a original-side sentiment predictor and an antonymous-side sentiment predictor, which jointly evaluate the quality of the generated sample and help the generator iteratively generate higher-quality antonymous samples; 3) the discriminator is directly used as the final sentiment classifier without the need to build an extra one. Extensive experiments show that our approach outperforms strong data augmentation baselines on several benchmark sentiment classification datasets. Further analysis confirms our approach’s advantages in generating more diverse training samples and solving the spurious association problem in sentiment classification.

#25 Idiosyncratic but not Arbitrary: Learning Idiolects in Online Registers Reveals Distinctive yet Consistent Individual Styles [PDF] [Copy] [Kimi1]

Authors: Jian Zhu ; David Jurgens

An individual’s variation in writing style is often a function of both social and personal attributes. While structured social variation has been extensively studied, e.g., gender based variation, far less is known about how to characterize individual styles due to their idiosyncratic nature. We introduce a new approach to studying idiolects through a massive cross-author comparison to identify and encode stylistic features. The neural model achieves strong performance at authorship identification on short texts and through an analogy-based probing task, showing that the learned representations exhibit surprising regularities that encode qualitative and quantitative shifts of idiolectal styles. Through text perturbation, we quantify the relative contributions of different linguistic elements to idiolectal variation. Furthermore, we provide a description of idiolects through measuring inter- and intra-author variation, showing that variation in idiolects is often distinctive yet consistent.