I8S4ASqO5H@OpenReview

Total: 1

#1 Chain-of-Zoom: Extreme Super-Resolution via Scale Autoregression and Preference Alignment [PDF2] [Copy] [Kimi] [REL]

Authors: Bryan Sangwoo Kim, Jeongsol Kim, Jong Chul Ye

Modern single-image super-resolution (SISR) models deliver photo-realistic results at the scale factors on which they are trained, but collapse when asked to magnify far beyond that regime. We address this scalability bottleneck with Chain-of-Zoom (CoZ), a model-agnostic framework that factorizes SISR into an autoregressive chain of intermediate scale-states with multi-scale-aware prompts. CoZ repeatedly re-uses a backbone SR model, decomposing the conditional probability into tractable sub-problems to achieve extreme resolutions without additional training. Because visual cues diminish at high magnifications, we augment each zoom step with multi-scale-aware text prompts generated by a vision-language model (VLM). The prompt extractor itself is fine-tuned using Generalized Reward Policy Optimization (GRPO) with a critic VLM, aligning text guidance towards human preference. Experiments show that a standard $4\times$ diffusion SR model wrapped in CoZ attains beyond $256\times$ enlargement with high perceptual quality and fidelity.

Subject: NeurIPS.2025 - Spotlight