Processing math: 100%

UAI.2021

| Total: 205

#1 Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling [PDF] [Copy] [Kimi] [REL]

Authors: Difan Zou, Pan Xu, Quanquan Gu

We provide a new convergence analysis of stochastic gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave. At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain. Under certain conditions on the target distribution, we prove that ˜O(d4ϵ2) stochastic gradient evaluations suffice to guarantee ϵ-sampling error in terms of the total variation distance, where d is the problem dimension. This improves existing results on the convergence rate of SGLD [Raginsky et al., 2017, Xu et al., 2018]. We further show that provided an additional Hessian Lipschitz condition on the log-density function, SGLD is guaranteed to achieve ϵ-sampling error within ˜O(d15/4ϵ3/2) stochastic gradient evaluations. Our proof technique provides a new way to study the convergence of Langevin based algorithms, and sheds some light on the design of fast stochastic gradient based sampling algorithms.

Subject: UAI.2021


#2 Unsupervised program synthesis for images by sampling without replacement [PDF] [Copy] [Kimi] [REL]

Authors: Chenghui Zhou, Chun-Liang Li, Barnabás Póczos

Program synthesis has emerged as a successful approach to the image parsing task. Most prior works rely on a two-step scheme involving supervised pretraining of a Seq2Seq model with synthetic programs followed by reinforcement learning (RL) for fine-tuning with real reference images. Fully unsupervised approaches promise to train the model directly on the target images without requiring curated pretraining datasets. However, they struggle with the inherent sparsity of meaningful programs in the search space. In this paper, we present the first unsupervised algorithm capable of parsing constructive solid geometry (CSG) images into context-free grammar (CFG) without pretraining. To tackle the <em>non-Markovian</em> sparse reward problem, we combine three key ingredients—(i) a grammar-encoded tree LSTM ensuring program validity (ii) entropy regularization and (iii) sampling without replacement from the CFG syntax tree. Empirically, our algorithm recovers meaningful programs in large search spaces (up to 3.8×1028). Further, even though our approach is fully unsupervised, it generalizes better than supervised methods on the synthetic 2D CSG dataset. On the 2D computer aided design (CAD) dataset, our approach significantly outperforms the supervised pretrained model and is competitive to the refined model.

Subject: UAI.2021


#3 Task similarity aware meta learning: theory-inspired improvement on MAML [PDF] [Copy] [Kimi] [REL]

Authors: Pan Zhou, Yingtian Zou, Xiao-Tong Yuan, Jiashi Feng, Caiming Xiong, Steven Hoi

Few-shot learning ability is heavily desired for machine intelligence. By meta-learning a model initialization from training tasks with fast adaptation ability to new tasks, model-agnostic meta-learning (MAML) has achieved remarkable success in a number of few-shot learning applications. However, theoretical understandings on the learning ability of MAML remain absent yet, hindering developing new and more advanced meta learning methods in a principled way. In this work, we solve this problem by theoretically justifying the fast adaptation capability of MAML when applied to new tasks. Specifically, we prove that the learnt meta-initialization can benefit the fast adaptation to new tasks with only a few steps of gradient descent. This result explicitly reveals the benefits of the unique designs in MAML. Then we propose a theory-inspired task similarity aware MAML which clusters tasks into multiple groups according to the estimated optimal model parameters and learns group-specific initializations. The proposed method improves upon MAML by speeding up the adaptation and giving stronger few-shot learning ability. Experimental results on the few-shot classification tasks testify its advantages.

Subject: UAI.2021


#4 Diagnostics for conditional density models and Bayesian inference algorithms [PDF] [Copy] [Kimi] [REL]

Authors: David Zhao, Niccolò Dalmasso, Rafael Izbicki, Ann B. Lee

There has been growing interest in the AI community for precise uncertainty quantification. Conditional density models f(y|x), where x represents potentially high-dimensional features, are an integral part of uncertainty quantification in prediction and Bayesian inference. However, it is challenging to assess conditional density estimates and gain insight into modes of failure. While existing diagnostic tools can determine whether an approximated conditional density is compatible overall with a data sample, they lack a principled framework for identifying, locating, and interpreting the nature of statistically significant discrepancies over the entire feature space. In this paper, we present rigorous and easy-to-interpret diagnostics such as (i) the “Local Coverage Test” (LCT), which distinguishes an arbitrarily misspecified model from the true conditional density of the sample, and (ii) “Amortized Local P-P plots” (ALP) which can quickly provide interpretable graphical summaries of distributional differences at any location x in the feature space. Our validation procedures scale to high dimensions and can potentially adapt to any type of data at hand. We demonstrate the effectiveness of LCT and ALP through a simulated experiment and applications to prediction and parameter inference for image data.

Subject: UAI.2021


#5 BayLIME: Bayesian local interpretable model-agnostic explanations [PDF] [Copy] [Kimi] [REL]

Authors: Xingyu Zhao, Wei Huang, Xiaowei Huang, Valentin Robu, David Flynn

Given the pressing need for assuring algorithmic transparency, Explainable AI (XAI) has emerged as one of the key areas of AI research. In this paper, we develop a novel Bayesian extension to the LIME framework, one of the most widely used approaches in XAI – which we call BayLIME. Compared to LIME, BayLIME exploits prior knowledge and Bayesian reasoning to improve both the consistency in repeated explanations of a single prediction and the robustness to kernel settings. BayLIME also exhibits better explanation fidelity than the state-of-the-art (LIME, SHAP and GradCAM) by its ability to integrate prior knowledge from, e.g., a variety of other XAI techniques, as well as verification and validation (V&amp;V) methods. We demonstrate the desirable properties of BayLIME through both theoretical analysis and extensive experiments.

Subject: UAI.2021


#6 Enabling long-range exploration in minimization of multimodal functions [PDF] [Copy] [Kimi] [REL]

Authors: Jiaxin Zhang, Hoang Tran, Dan Lu, Guannan Zhang

We consider the problem of minimizing multi-modal loss functions with a large number of local optima. Since the local gradient points to the direction of the steepest slope in an infinitesimal neighborhood, an optimizer guided by the local gradient is often trapped in a local minimum. To address this issue, we develop a novel nonlocal gradient to skip small local minima by capturing major structures of the loss’s landscape in black-box optimization. The nonlocal gradient is defined by a directional Gaussian smoothing (DGS) approach. The key idea of DGS is to conducts 1D long-range exploration with a large smoothing radius along d orthogonal directions in Rd, each of which defines a nonlocal directional derivative as a 1D integral. Such long-range exploration enables the nonlocal gradient to skip small local minima. The d directional derivatives are then assembled to form the nonlocal gradient. We use the Gauss-Hermite quadrature rule to approximate the d 1D integrals to obtain an accurate estimator. The superior performance of our method is demonstrated in three sets of examples, including benchmark functions for global optimization, and two real-world scientific problems.

Subject: UAI.2021


#7 Dynamic visualization for L1 fusion convex clustering in near-linear time [PDF] [Copy] [Kimi] [REL]

Authors: Bingyuan Zhang, Jie Chen, Yoshikazu Terada

Convex clustering has drawn recent attention because of its competitive performance and nice property to guarantee global optimality. However, convex clustering is infeasible due to its high computational cost for large-scale data sets. We propose a novel method to solve the L1 fusion convex clustering problem by dynamic programming. We develop the Convex clustering Path Algorithm In Near-linear Time (C-PAINT) algorithm to construct the solution path efficiently. The proposed C-PAINT yields the exact solution while other general solvers for convex problems applied in the convex clustering depend on tuning parameters such as step size and threshold, and it usually takes many iterations to converge. Including a sorting process that almost takes no time in practice, the main part of the algorithm takes only linear time. Thus, C-PAINT has superior scalability comparing to other state-of-art algorithms. Moreover, C-PAINT enables the path visualization of clustering solutions for large data. In particular, experiments show our proposed method can solve the convex clustering with 10^7 data points in two minutes. We demonstrate the proposed method using both synthetic data and real data. Our algorithms are implemented in the dpcc R package.

Subject: UAI.2021


#8 The complexity of nonconvex-strongly-concave minimax optimization [PDF] [Copy] [Kimi] [REL]

Authors: Siqi Zhang, Junchi Yang, Cristóbal Guzmán, Negar Kiyavash, Niao He

This paper studies the complexity for finding approximate stationary points of nonconvex-strongly-concave (NC-SC) smooth minimax problems, in both general and averaged smooth finite-sum settings. We establish nontrivial lower complexity bounds for the two settings, respectively. Our result reveals substantial gaps between these limits and best-known upper bounds in the literature. To close these gaps, we introduce a generic acceleration scheme that deploys existing gradient-based methods to solve a sequence of crafted strongly-convex-strongly-concave subproblems. In the general setting, the complexity of our proposed algorithm nearly matches the lower bound; in particular, it removes an additional poly-logarithmic dependence on accuracy present in previous works. In the averaged smooth finite-sum setting, our proposed algorithm improves over previous algorithms by providing a nearly-tight dependence on the condition number.

Subject: UAI.2021


#9 Structured sparsification with joint optimization of group convolution and channel shuffle [PDF] [Copy] [Kimi] [REL]

Authors: Xin-Yu Zhang, Kai Zhao, Taihong Xiao, Ming-Ming Cheng, Ming-Hsuan Yang

Recent advances in convolutional neural networks (CNNs) usually come with the expense of excessive computational overhead and memory footprint. Network compression aims to alleviate this issue by training compact models with comparable performance. However, existing compression techniques either entail dedicated expert design or compromise with a moderate performance drop. In this paper, we propose a novel structured sparsification method for efficient network compression. The proposed method automatically induces structured sparsity on the convolutional weights, thereby facilitating the implementation of the compressed model with the highly-optimized group convolution. We further address the problem of inter-group communication with a learnable channel shuffle mechanism. The proposed approach can be easily applied to compress many network architectures with a negligible performance drop. Extensive experimental results and analysis demonstrate that our approach gives a competitive performance against the recent network compression counterparts with a sound accuracy-complexity trade-off.

Subject: UAI.2021


#10 On the distributional properties of adaptive gradients [PDF] [Copy] [Kimi] [REL]

Authors: Zhiyi Zhang, Ziyin Liu

Adaptive gradient methods have achieved remarkable success in training deep neural networks on a wide variety of tasks. However, not much is known about the mathematical and statistical properties of this family of methods. This work aims at providing a series of theoretical analyses of its statistical properties justified by experiments. In particular, we show that when the underlying gradient obeys a normal distribution, the variance of the magnitude of the <em>update</em> is an increasing and bounded function of time and does not diverge. This work suggests that the divergence of variance is not the cause of the need for warm-up of the Adam optimizer, contrary to what is believed in the current literature.

Subject: UAI.2021


#11 NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation [PDF] [Copy] [Kimi] [REL]

Authors: Xiaohui Zeng, Raquel Urtasun, Richard Zemel, Sanja Fidler, Renjie Liao

In this paper, we present a non-parametric structured latent variable model for image generation, called NP-DRAW, which sequentially draws on a latent canvas in a part-by-part fashion and then decodes the image from the canvas. Our key contributions are as follows. 1) We propose a non-parametric prior distribution over the appearance of image parts so that the latent variable “what-to-draw” per step becomes a categorical random variable. This improves the expressiveness and greatly eases the learning compared to Gaussians used in the literature. 2) We model the sequential dependency structure of parts via a Transformer, which is more powerful and easier to train compared to RNNs used in the literature. 3) We propose an effective heuristic parsing algorithm to pre-train the prior. Experiments on MNIST, Omniglot, CIFAR-10, and CelebA show that our method significantly outperforms previous structured image models like DRAW and AIR and is competitive to other generic generative models. Moreover, we show that our model’s inherent compositionality and interpretability bring significant benefits in the low-data learning regime and latent space editing.

Subject: UAI.2021


#12 A decentralized policy gradient approach to multi-task reinforcement learning [PDF] [Copy] [Kimi] [REL]

Authors: Sihan Zeng, Malik Aqeel Anwar, Thinh T. Doan, Arijit Raychowdhury, Justin Romberg

We develop a mathematical framework for solving multi-task reinforcement learning (MTRL) problems based on a type of policy gradient method. The goal in MTRL is to learn a common policy that operates effectively in different environments; these environments have similar (or overlapping) state spaces, but have different rewards and dynamics. We highlight two fundamental challenges in MTRL that are not present in its single task counterpart, and illustrate them with simple examples. We then develop a decentralized entropyregularized policy gradient method for solving the MTRL problem, and study its finite-time convergence rate. We demonstrate the effectiveness of the proposed method using a series of numerical experiments. These experiments range from small-scale "GridWorld" problems that readily demonstrate the trade-offs involved in multi-task learning to large-scale problems, where common policies are learned to navigate an airborne drone in multiple (simulated) environments.

Subject: UAI.2021


#13 PROVIDE: a probabilistic framework for unsupervised video decomposition [PDF] [Copy] [Kimi] [REL]

Authors: Polina Zablotskaia, Edoardo A. Dominici, Leonid Sigal, Andreas M. Lehrmann

Unsupervised multi-object scene decomposition is a fast-emerging problem in representation learning. Despite significant progress in static scenes, such models are unable to leverage important dynamic cues present in videos. We propose PROVIDE, a novel unsupervised framework for PRObabilistic VIdeo DEcomposition based on a temporal extension of iterative inference. PROVIDE is powerful enough to jointly model complex individual multi-object representations and explicit temporal dependencies between latent variables across frames. This is achieved by leveraging 2D-LSTM, temporally conditioned inference and generation within the iterative amortized inference for posterior refinement. Our method improves the overall quality of decompositions, encodes information about the objects’ dynamics, and can be used to predict trajectories of each object separately. Additionally, we show that our model has a high accuracy even without color information. We demonstrate the decomposition capabilities of our model and show that it outperforms the state-of-the-art on several benchmark datasets, one of which was curated for this work and will be made publicly available.

Subject: UAI.2021


#14 Leveraging probabilistic circuits for nonparametric multi-output regression [PDF] [Copy] [Kimi] [REL]

Authors: Zhongjie Yu, Mingye Zhu, Martin Trapp, Arseny Skryagin, Kristian Kersting

Inspired by recent advances in the field of expert-based approximations of Gaussian processes (GPs), we present an expert-based approach to large-scale multi-output regression using single-output GP experts. Employing a deeply structured mixture of single-output GPs encoded via a probabilistic circuit allows us to capture correlations between multiple output dimensions accurately. By recursively partitioning the covariate space and the output space, posterior inference in our model reduces to inference on single-output GP experts, which only need to be conditioned on a small subset of the observations. We show that inference can be performed exactly and efficiently in our model, that it can capture correlations between output dimensions and, hence, often outperforms approaches that do not incorporate inter-output correlations, as demonstrated on several data sets in terms of the negative log predictive density.

Subject: UAI.2021


#15 Multi-output Gaussian Processes for uncertainty-aware recommender systems [PDF] [Copy] [Kimi] [REL]

Authors: Yinchong Yang, Florian Buettner

Recommender systems are often designed based on a collaborative filtering approach, where user preferences are predicted by modelling interactions between users and items. Many common approaches to solve the collaborative filtering task are based on learning representations of users and items, including simple matrix factorization, Gaussian process latent variable models, and neural-network based embeddings. While matrix factorization approaches fail to model nonlinear relations, neural networks can potentially capture such complex relations with unprecedented predictive power and are highly scalable. However, neither of them is able to model predictive uncertainties. In contrast, Gaussian Process based models can generate a predictive distribution, but cannot scale to large amounts of data. In this manuscript, we propose a novel approach combining the representation learning paradigm of collaborative filtering with multi-output Gaussian processes in a joint framework to generate uncertainty-aware recommendations. We introduce an efficient strategy for model training and inference, resulting in a model that scales to very large and sparse datasets and achieves competitive performance in terms of classical metrics quantifying the reconstruction error. In addition to accurately predicting user preferences, our model also provides meaningful uncertainty estimates about that prediction.

Subject: UAI.2021


#16 Explaining fast improvement in online imitation learning [PDF] [Copy] [Kimi] [REL]

Authors: Xinyan Yan, Byron Boots, Ching-An Cheng

Online imitation learning (IL) is an algorithmic framework that leverages interactions with expert policies for efficient policy optimization. Here policies are optimized by performing online learning on a sequence of loss functions that encourage the learner to mimic expert actions, and if the online learning has no regret, the agent can provably learn an expert-like policy. Online IL has demonstrated empirical successes in many applications and interestingly, its policy improvement speed observed in practice is usually much faster than existing theory suggests. In this work, we provide an explanation of this phenomenon. Let ξ denote the policy class bias and assume the online IL loss functions are convex, smooth, and non-negative. We prove that, after N rounds of online IL with stochastic feedback, the policy improves in ˜O(1/N+ξ/N) in both expectation and high probability. In other words, we show that adopting a sufficiently expressive policy class in online IL has two benefits: both the policy improvement speed increases and the performance bias decreases.

Subject: UAI.2021


#17 Simple combinatorial algorithms for combinatorial bandits: corruptions and approximations [PDF] [Copy] [Kimi] [REL]

Authors: Haike Xu, Jian Li

We consider the stochastic combinatorial semi-bandit problem with adversarial corruptions. We provide a simple combinatorial algorithm that can achieve a regret of ˜O(C+d2K/Δmin) where C is the total amount of corruptions, d is the maximal number of arms one can play in each round, K is the number of arms. If one selects only one arm in each round, we achieves a regret of ˜O(C+Δi>0(1/Δi)). Our algorithm is combinatorial and improves on the previous combinatorial algorithm by [Gupta et al., COLT2019] (their bound is ˜O(KC+Δi>0(1/Δi))), and almost matches the best known bounds obtained by [Zimmert et al., ICML2019] and [Zimmert and Seldin, AISTATS2019] (up to logarithmic factor). Note that the algorithms in [Zimmert et al., ICML2019] and [Zimmert and Seldin, AISTATS2019] require one to solve complex convex programs while our algorithm is combinatorial, very easy to implement, requires weaker assumptions and has very low oracle complexity and running time. We also study the setting where we only get access to an approximation oracle for the stochastic combinatorial semi-bandit problem. Our algorithm achieves an (approximation) regret bound of ˜O(dKT). Our algorithm is very simple, only worse than the best known regret bound by d, and has much lower oracle complexity than previous work.

Subject: UAI.2021


#18 Robust reinforcement learning under minimax regret for green security [PDF] [Copy] [Kimi] [REL]

Authors: Lily Xu, Andrew Perrault, Fei Fang, Haipeng Chen, Milind Tambe

Green security domains feature defenders who plan patrols in the face of uncertainty about the adversarial behavior of poachers, illegal loggers, and illegal fishers. Importantly, the deterrence effect of patrols on adversaries’ future behavior makes patrol planning a sequential decision-making problem. Therefore, we focus on robust sequential patrol planning for green security following the minimax regret criterion, which has not been considered in the literature. We formulate the problem as a game between the defender and nature who controls the parameter values of the adversarial behavior and design an algorithm MIRROR to find a robust policy. MIRROR uses two reinforcement learning–based oracles and solves a restricted game considering limited defender strategies and parameter values. We evaluate MIRROR on real-world poaching data.

Subject: UAI.2021


#19 Extendability of causal graphical models: Algorithms and computational complexity [PDF] [Copy] [Kimi] [REL]

Authors: Marcel Wienöbst, Max Bannach, Maciej Liśkiewicz

Finding a consistent DAG extension for a given partially directed acyclic graph (PDAG) is a basic building block used in graphical causal analysis. In 1992, Dor and Tarsi proposed an algorithm with time complexity O(n^4), which has been widely used in causal theory and practice so far. It is a long-standing open question whether an extension can be computed faster and, in particular, it was conjectured that a linear-time method may exist. The main contributions of our work are two-fold: Firstly, we propose a new algorithm for the extension problem for PDAGs which runs in time O(n^3); secondly, we show that, under a computational intractability assumption, our cubic algorithm is optimal. Thus, our impossibility result disproves the conjecture that a linear-time method exists. Based on these results, we present a full complexity landscape for finding extensions in various causal graphical models. We extend the techniques to recognition problems and apply them to design an effective algorithm for closing a PDAG under the orientation rules of Meek.

Subject: UAI.2021


#20 Certification of iterative predictions in Bayesian neural networks [PDF] [Copy] [Kimi] [REL]

Authors: Matthew Wicker, Luca Laurenti, Andrea Patane, Nicola Paoletti, Alessandro Abate, Marta Kwiatkowska

We consider the problem of computing reach-avoid probabilities for iterative predictions made with Bayesian neural network (BNN) models. Specifically, we leverage bound propagation techniques and backward recursion to compute lower bounds for the probability that trajectories of the BNN model reach a given set of states while avoiding a set of unsafe states. We use the lower bounds in the context of control and reinforcement learning to provide safety certification for given control policies, as well as to synthesize control policies that improve the certification bounds. On a set of benchmarks, we demonstrate that our framework can be employed to certify policies over BNNs predictions for problems of more than 10 dimensions, and to effectively synthesize policies that significantly increase the lower bound on the satisfaction probability.

Subject: UAI.2021


#21 Exploring the loss landscape in neural architecture search [PDF] [Copy] [Kimi] [REL]

Authors: Colin White, Sam Nolen, Yash Savani

Neural architecture search (NAS) has seen a steep rise in interest over the last few years. Many algorithms for NAS consist of searching through a space of architectures by iteratively choosing an architecture, evaluating its performance by training it, and using all prior evaluations to come up with the next choice. The evaluation step is noisy - the final accuracy varies based on the random initialization of the weights. Prior work has focused on devising new search algorithms to handle this noise, rather than quantifying or understanding the level of noise in architecture evaluations. In this work, we show that (1) the simplest hill-climbing algorithm is a powerful baseline for NAS, and (2), when the noise in popular NAS benchmark datasets is reduced to a minimum, the loss landscape becomes near-convex, causing hill-climbing to outperform many popular state-of-the-art algorithms. We further back up this observation by showing that the number of local minima is substantially reduced as the noise decreases and by giving a theoretical characterization of the performance of local search in NAS. Based on our findings, for NAS research we suggest (1) using local search as a baseline, and (2) denoising the training pipeline when possible.

Subject: UAI.2021


#22 Local explanations via necessity and sufficiency: unifying theory and practice [PDF] [Copy] [Kimi] [REL]

Authors: David S. Watson, Limor Gultchin, Ankur Taly, Luciano Floridi

Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence (XAI), a fast-growing research area that is so far lacking in firm theoretical foundations. Building on work in logic, probability, and causality, we establish the central role of necessity and sufficiency in XAI, unifying seemingly disparate methods in a single formal framework. We provide a sound and complete algorithm for computing explanatory factors with respect to a given context, and demonstrate its flexibility and competitive performance against state of the art alternatives on various tasks.

Subject: UAI.2021


#23 Explicit pairwise factorized graph neural network for semi-supervised node classification [PDF] [Copy] [Kimi] [REL]

Authors: Yu Wang, Yuesong Shen, Daniel Cremers

Node features and structural information of a graph are both crucial for semi-supervised node classification problems. A variety of graph neural network (GNN) based approaches have been proposed to tackle these problems, which typically determine output labels through feature aggregation. This can be problematic, as it implies conditional independence of output nodes given hidden representations, despite their direct connections in the graph. To learn the direct influence among output nodes in a graph, we propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field. It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations. To balance model complexity and expressivity, the pairwise factors have a shared component and a separate scaling coefficient for each edge. We apply the EM algorithm to train our model, and utilize a star-shaped piecewise likelihood for the tractable surrogate objective. We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.

Subject: UAI.2021


#24 CORe: Capitalizing On Rewards in Bandit Exploration [PDF] [Copy] [Kimi] [REL]

Authors: Nan Wang, Branislav Kveton, Maryam Karimzadehgan

We propose a bandit algorithm that explores purely by randomizing its past observations. In particular, the sufficient optimism in the mean reward estimates is achieved by exploiting the variance in the past observed rewards. We name the algorithm Capitalizing On Rewards (CORe). The algorithm is general and can be easily applied to different bandit settings. The main benefit of CORe is that its exploration is fully data-dependent. It does not rely on any external noise and adapts to different problems without parameter tuning. We derive a ˜O(dnlogK) gap-free bound on the n-round regret of CORe in a stochastic linear bandit, where d is the number of features and K is the number of arms. Extensive empirical evaluation on multiple synthetic and real-world problems demonstrates the effectiveness of CORe.

Subject: UAI.2021


#25 Statistically robust neural network classification [PDF] [Copy] [Kimi] [REL]

Authors: Benjie Wang, Stefan Webb, Tom Rainforth

Despite their numerous successes, there are many scenarios where adversarial risk metrics do not provide an appropriate measure of robustness. For example, test-time perturbations may occur in a probabilistic manner rather than being generated by an explicit adversary, while the poor train–test generalization of adversarial metrics can limit their usage to simple problems. Motivated by this, we develop a probabilistic robust risk framework, the statistically robust risk (SRR), which considers pointwise corruption distributions, as opposed to worst-case adversaries. The SRR provides a distinct and complementary measure of robust performance, compared to natural and adversarial risk. We show that the SRR admits estimation and training schemes which are as simple and efficient as for the natural risk: these simply require noising the inputs, but with a principled derivation for exactly how and why this should be done. Furthermore, we demonstrate both theoretically and experimentally that it can provide superior generalization performance compared with adversarial risks, enabling application to high-dimensional datasets.

Subject: UAI.2021