zhou21a@v161@PMLR

Total: 1

#1 Task similarity aware meta learning: theory-inspired improvement on MAML [PDF] [Copy] [Kimi] [REL]

Authors: Pan Zhou, Yingtian Zou, Xiao-Tong Yuan, Jiashi Feng, Caiming Xiong, Steven Hoi

Few-shot learning ability is heavily desired for machine intelligence. By meta-learning a model initialization from training tasks with fast adaptation ability to new tasks, model-agnostic meta-learning (MAML) has achieved remarkable success in a number of few-shot learning applications. However, theoretical understandings on the learning ability of MAML remain absent yet, hindering developing new and more advanced meta learning methods in a principled way. In this work, we solve this problem by theoretically justifying the fast adaptation capability of MAML when applied to new tasks. Specifically, we prove that the learnt meta-initialization can benefit the fast adaptation to new tasks with only a few steps of gradient descent. This result explicitly reveals the benefits of the unique designs in MAML. Then we propose a theory-inspired task similarity aware MAML which clusters tasks into multiple groups according to the estimated optimal model parameters and learns group-specific initializations. The proposed method improves upon MAML by speeding up the adaptation and giving stronger few-shot learning ability. Experimental results on the few-shot classification tasks testify its advantages.

Subject: UAI.2021