IJCAI.2020 - Machine Learning Applications

Total: 12

#1 Inferring Degrees from Incomplete Networks and Nonlinear Dynamics [PDF] [Copy] [Kimi]

Authors: Chunheng Jiang ; Jianxi Gao ; Malik Magdon-Ismail

Inferring topological characteristics of complex networks from observed data is critical to understand the dynamical behavior of networked systems, ranging from the Internet and the World Wide Web to biological networks and social networks. Prior studies usually focus on the structure-based estimation to infer network sizes, degree distributions, average degrees, and more. Little effort attempted to estimate the specific degree of each vertex from a sampled induced graph, which prevents us from measuring the lethality of nodes in protein networks and influencers in social networks. The current approaches dramatically fail for a tiny sampled induced graph and require a specific sampling method and a large sample size. These approaches neglect information of the vertex state, representing the dynamical behavior of the networked system, such as the biomass of species or expression of a gene, which is useful for degree estimation. We fill this gap by developing a framework to infer individual vertex degrees using both information of the sampled topology and vertex state. We combine the mean-field theory with combinatorial optimization to learn vertex degrees. Experimental results on real networks with a variety of dynamics demonstrate that our framework can produce reliable degree estimates and dramatically improve existing link prediction methods by replacing the sampled degrees with our estimated degrees.

#2 DeepWeave: Accelerating Job Completion Time with Deep Reinforcement Learning-based Coflow Scheduling [PDF] [Copy] [Kimi]

Authors: Penghao Sun ; Zehua Guo ; Junchao Wang ; Junfei Li ; Julong Lan ; Yuxiang Hu

To improve the processing efficiency of jobs in distributed computing, the concept of coflow is proposed. A coflow is a collection of flows that are semantically correlated in a multi-stage computation task. A job consists of multiple coflows and can be usually formulated as a Directed-Acyclic Graph (DAG). A proper scheduling of coflows can significantly reduce the completion time of jobs in distributed computing. However, this scheduling problem is proved to be NP-hard. Different from existing schemes that use hand-crafted heuristic algorithms to solve this problem, in this paper, we propose a Deep Reinforcement Learning (DRL) framework named DeepWeave to generate coflow scheduling policies. To improve the inter-coflow scheduling ability in the job DAG, DeepWeave employs a Graph Neural Network (GNN) to process the DAG information. DeepWeave learns from the history workload trace to train the neural networks of the DRL agent and encodes the scheduling policy in the neural networks, which make coflow scheduling decisions without expert knowledge or a pre-assumed model. The proposed scheme is evaluated with a simulator using real-life traces. Simulation results show that DeepWeave completes jobs at least 1.7X faster than the state-of-the-art solutions.

#3 Adversarial Mutual Information Learning for Network Embedding [PDF] [Copy] [Kimi]

Authors: Dongxiao He ; Lu Zhai ; Zhigang Li ; Di Jin ; Liang Yang ; Yuxiao Huang ; Philip S. Yu

Network embedding which is to learn a low dimensional representation of nodes in a network has been used in many network analysis tasks. Some network embedding methods, including those based on generative adversarial networks (GAN) (a promising deep learning technique), have been proposed recently. Existing GAN-based methods typically use GAN to learn a Gaussian distribution as a priori for network embedding. However, this strategy makes it difficult to distinguish the node representation from Gaussian distribution. Moreover, it does not make full use of the essential advantage of GAN (that is to adversarially learn the representation mechanism rather than the representation itself), leading to compromised performance of the method. To address this problem, we propose to use the adversarial idea on the representation mechanism, i.e. on the encoding mechanism under the framework of autoencoder. Specifically, we use the mutual information between node attributes and embedding as a reasonable alternative of this encoding mechanism (which is much easier to track). Additionally, we introduce another mapping mechanism (which is based on GAN) as a competitor into the adversarial learning system. A range of empirical results demonstrate the effectiveness of the proposed approach.

#4 Binary Classification from Positive Data with Skewed Confidence [PDF] [Copy] [Kimi]

Authors: Kazuhiko Shinoda ; Hirotaka Kaji ; Masashi Sugiyama

Positive-confidence (Pconf) classification [Ishida et al., 2018] is a promising weakly-supervised learning method which trains a binary classifier only from positive data equipped with confidence. However, in practice, the confidence may be skewed by bias arising in an annotation process. The Pconf classifier cannot be properly learned with skewed confidence, and consequently, the classification performance might be deteriorated. In this paper, we introduce the parameterized model of the skewed confidence, and propose the method for selecting the hyperparameter which cancels out the negative impact of the skewed confidence under the assumption that we have the misclassification rate of positive samples as a prior knowledge. We demonstrate the effectiveness of the proposed method through a synthetic experiment with simple linear models and benchmark problems with neural network models. We also apply our method to drivers’ drowsiness prediction to show that it works well with a real-world problem where confidence is obtained based on manual annotation.

#5 A Label Attention Model for ICD Coding from Clinical Text [PDF] [Copy] [Kimi]

Authors: Thanh Vu ; Dat Quoc Nguyen ; Anthony Nguyen

ICD coding is a process of assigning the International Classification of Disease diagnosis codes to clinical/medical notes documented by health professionals (e.g. clinicians). This process requires significant human resources, and thus is costly and prone to error. To handle the problem, machine learning has been utilized for automatic ICD coding. Previous state-of-the-art models were based on convolutional neural networks, using a single/several fixed window sizes. However, the lengths and interdependence between text fragments related to ICD codes in clinical text vary significantly, leading to the difficulty of deciding what the best window sizes are. In this paper, we propose a new label attention model for automatic ICD coding, which can handle both the various lengths and the interdependence of the ICD code related text fragments. Furthermore, as the majority of ICD codes are not frequently used, leading to the extremely imbalanced data issue, we additionally propose a hierarchical joint learning mechanism extending our label attention model to handle the issue, using the hierarchical relationships among the codes. Our label attention model achieves new state-of-the-art results on three benchmark MIMIC datasets, and the joint learning mechanism helps improve the performances for infrequent codes.

#6 Predicting Landslides Using Locally Aligned Convolutional Neural Networks [PDF] [Copy] [Kimi]

Authors: Ainaz Hajimoradlou ; Gioachino Roberti ; David Poole

Landslides, movement of soil and rock under the influence of gravity, are common phenomena that cause significant human and economic losses every year. Experts use heterogeneous features such as slope, elevation, land cover, lithology, rock age, and rock family to predict landslides. To work with such features, we adapted convolutional neural networks to consider relative spatial information for the prediction task. Traditional filters in these networks either have a fixed orientation or are rotationally invariant. Intuitively, the filters should orient uphill, but there is not enough data to learn the concept of uphill; instead, it can be provided as prior knowledge. We propose a model called Locally Aligned Convolutional Neural Network, LACNN, that follows the ground surface at multiple scales to predict possible landslide occurrence for a single point. To validate our method, we created a standardized dataset of georeferenced images consisting of the heterogeneous features as inputs, and compared our method to several baselines, including linear regression, a neural network, and a convolutional network, using log-likelihood error and Receiver Operating Characteristic curves on the test set. Our model achieves 2-7% improvement in terms of accuracy and 2-15% boost in terms of log likelihood compared to the other proposed baselines.

#7 Semi-Markov Reinforcement Learning for Stochastic Resource Collection [PDF] [Copy] [Kimi]

Authors: Sebastian Schmoll ; Matthias Schubert

We show that the task of collecting stochastic, spatially distributed resources (Stochastic Resource Collection, SRC) may be considered as a Semi-Markov-Decision-Process. Our Deep-Q-Network (DQN) based approach uses a novel scalable and transferable artificial neural network architecture. The concrete use-case of the SRC is an officer (single agent) trying to maximize the amount of fined parking violations in his area. We evaluate our approach on a environment based on the real-world parking data of the city of Melbourne. In small, hence simple, settings with short distances between resources and few simultaneous violations, our approach is comparable to previous work. When the size of the network grows (and hence the amount of resources) our solution significantly outperforms preceding methods. Moreover, applying a trained agent to a non-overlapping new area outperforms existing approaches.

#8 Inverse Reinforcement Learning for Team Sports: Valuing Actions and Players [PDF] [Copy] [Kimi]

Authors: Yudong Luo ; Oliver Schulte ; Pascal Poupart

A major task of sports analytics is to rank players based on the impact of their actions. Recent methods have applied reinforcement learning (RL) to assess the value of actions from a learned action value or Q-function. A fundamental challenge for estimating action values is that explicit reward signals (goals) are very sparse in many team sports, such as ice hockey and soccer. This paper combines Q-function learning with inverse reinforcement learning (IRL) to provide a novel player ranking method. We treat professional play as expert demonstrations for learning an implicit reward function. Our method alternates single-agent IRL to learn a reward function for multiple agents; we provide a theoretical justification for this procedure. Knowledge transfer is used to combine learned rewards and observed rewards from goals. Empirical evaluation, based on 4.5M play-by-play events in the National Hockey League (NHL), indicates that player ranking using the learned rewards achieves high correlations with standard success measures and temporal consistency throughout a season.

#9 C3MM: Clique-Closure based Hyperlink Prediction [PDF] [Copy] [Kimi]

Authors: Govind Sharma ; Prasanna Patil ; M. Narasimha Murty

Usual networks lossily (if not incorrectly) represent higher-order relations, i.e. those between multiple entities instead of a pair. This calls for complex structures such as hypergraphs to be used instead. Akin to the link prediction problem in graphs, we deal with hyperlink (higher-order link) prediction in hypergraphs. With a handful of solutions in the literature that seem to have merely scratched the surface, we provide improvements for the same. Motivated by observations in recent literature, we first formulate a "clique-closure" hypothesis (viz., hyperlinks are more likely to be formed from near-cliques rather than from non-cliques), test it on real hypergraphs, and then exploit it for our very problem. In the process, we generalize hyperlink prediction on two fronts: (1) from small-sized to arbitrary-sized hyperlinks, and (2) from a couple of domains to a handful. We perform experiments (both the hypothesis-test as well as the hyperlink prediction) on multiple real datasets, report results, and provide both quantitative and qualitative arguments favoring better performances w.r.t. the state-of-the-art.

#10 Generating Behavior-Diverse Game AIs with Evolutionary Multi-Objective Deep Reinforcement Learning [PDF] [Copy] [Kimi]

Authors: Ruimin Shen ; Yan Zheng ; Jianye Hao ; Zhaopeng Meng ; Yingfeng Chen ; Changjie Fan ; Yang Liu

Generating diverse behaviors for game artificial intelligence (Game AI) has been long recognized as a challenging task in the game industry. Designing a Game AI with a satisfying behavioral characteristic (style) heavily depends on the domain knowledge and is hard to achieve manually. Deep reinforcement learning sheds light on advancing the automatic Game AI design. However, most of them focus on creating a superhuman Game AI, ignoring the importance of behavioral diversity in games. To bridge the gap, we introduce a new framework, named EMOGI, which can automatically generate desirable styles with almost no domain knowledge. More importantly, EMOGI succeeds in creating a range of diverse styles, providing behavior-diverse Game AIs. Evaluations on the Atari and real commercial games indicate that, compared to existing algorithms, EMOGI performs better in generating diverse behaviors and significantly improves the efficiency of Game AI design.

#11 CDC: Classification Driven Compression for Bandwidth Efficient Edge-Cloud Collaborative Deep Learning [PDF] [Copy] [Kimi]

Authors: Yuanrui Dong ; Peng Zhao ; Hanqiao Yu ; Cong Zhao ; Shusen Yang

The emerging edge-cloud collaborative Deep Learning (DL) paradigm aims at improving the performance of practical DL implementations in terms of cloud bandwidth consumption, response latency, and data privacy preservation. Focusing on bandwidth efficient edge-cloud collaborative training of DNN-based classifiers, we present CDC, a Classification Driven Compression framework that reduces bandwidth consumption while preserving classification accuracy of edge-cloud collaborative DL. Specifically, to reduce bandwidth consumption, for resource-limited edge servers, we develop a lightweight autoencoder with a classification guidance for compression with classification driven feature preservation, which allows edges to only upload the latent code of raw data for accurate global training on the Cloud. Additionally, we design an adjustable quantization scheme adaptively pursuing the tradeoff between bandwidth consumption and classification accuracy under different network conditions, where only fine-tuning is required for rapid compression ratio adjustment. Results of extensive experiments demonstrate that, compared with DNN training with raw data, CDC consumes 14.9× less bandwidth with an accuracy loss no more than 1.06%, and compared with DNN training with data compressed by AE without guidance, CDC introduces at least 100% lower accuracy loss.

#12 HID: Hierarchical Multiscale Representation Learning for Information Diffusion [PDF] [Copy] [Kimi]

Authors: Honglu Zhou ; Shuyuan Xu ; Zuohui Fu ; Gerard de Melo ; Yongfeng Zhang ; Mubbasir Kapadia

Multiscale modeling has yielded immense success on various machine learning tasks. However, it has not been properly explored for the prominent task of information diffusion, which aims to understand how information propagates along users in online social networks. For a specific user, whether and when to adopt a piece of information propagated from another user is affected by complex interactions, and thus, is very challenging to model. Current state-of-the-art techniques invoke deep neural models with vector representations of users. In this paper, we present a Hierarchical Information Diffusion (HID) framework by integrating user representation learning and multiscale modeling. The proposed framework can be layered on top of all information diffusion techniques that leverage user representations, so as to boost the predictive power and learning efficiency of the original technique. Extensive experiments on three real-world datasets showcase the superiority of our method.