USENIX-Sec.2020

| Total: 94

#1 Civet: An Efficient Java Partitioning Framework for Hardware Enclaves [PDF] [Copy] [Kimi2] [REL]

Authors: Chia-Che Tsai ; Jeongseok Son ; Bhushan Jain ; John McAvey ; Raluca Ada Popa ; Donald E. Porter

Hardware enclaves are designed to execute small pieces of sensitive code or to operate on sensitive data, in isolation from larger, less trusted systems. Partitioning a large, legacy application requires significant effort. Partitioning an application written in a managed language, such as Java, is more challenging because of mutable language characteristics, extensive code reachability in class libraries, and the inevitability of using a heavyweight runtime. Civet is a framework for partitioning Java applications into enclaves. Civet reduces the number of lines of code in the enclave and uses language-level defenses, including deep type checks and dynamic taint-tracking, to harden the enclave interface. Civet also contributes a partitioned Java runtime design, including a garbage collection design optimized for the peculiarities of enclaves. Civet is efficient for data-intensive workloads; partitioning a Hadoop mapper reduces the enclave overhead from 10× to 16–22% without taint-tracking or 70–80% with taint-tracking.

#2 "I am uncomfortable sharing what I can't see": Privacy Concerns of the Visually Impaired with Camera Based Assistive Applications [PDF] [Copy] [Kimi2] [REL]

Authors: Taslima Akter ; Bryan Dosono ; Tousif Ahmed ; Apu Kapadia ; Bryan Semaan

The emergence of camera-based assistive technologies has empowered people with visual impairments (VIP) to obtain independence in their daily lives. Popular services feature volunteers who answer questions about photos or videos (e.g., to identify a medical prescription). However, people with VIPs can (inadvertently) reveal sensitive information to these volunteers. To better understand the privacy concerns regarding the disclosure of background objects to different types of human assistants (friends, family, and others), we conducted an online survey with 155 visually impaired participants. In general, our participants had varying concerns depending on the type of assistants and the kind of information. We found that our participants were more concerned about the privacy of bystanders than their own when capturing people in images. We also found that participants were concerned about self-presentation and were more comfortable sharing embarrassing information with family than with their friends. Our findings suggest directions for future work in the development of human-assisted question-answering systems. Specifically, we discuss how humanizing these systems can give people a greater sense of personal security.

#3 Delphi: A Cryptographic Inference Service for Neural Networks [PDF] [Copy] [Kimi2] [REL]

Authors: Pratyush Mishra ; Ryan Lehmkuhl ; Akshayaram Srinivasan ; Wenting Zheng ; Raluca Ada Popa

Many companies provide neural network prediction services to users for a wide range of applications. However, current prediction systems compromise one party's privacy: either the user has to send sensitive inputs to the service provider for classification, or the service provider must store its proprietary neural networks on the user's device. The former harms the personal privacy of the user, while the latter reveals the service provider's proprietary model. We design, implement, and evaluate Delphi, a secure prediction system that allows two parties to run a neural network inference without revealing either party's data. Delphi approaches the problem by simultaneously co-designing cryptography and machine learning. We first design a hybrid cryptographic protocol that improves upon the communication and computation costs over prior work. Second, we develop a planner that automatically generates neural network architecture configurations that navigate the performance-accuracy trade-offs of our hybrid protocol. Together, these techniques allow us to achieve a 22x improvement in prediction latency compared to the state-of-the-art prior work.

#4 PHMon: A Programmable Hardware Monitor and Its Security Use Cases [PDF] [Copy] [Kimi1] [REL]

Authors: Leila Delshadtehrani ; Sadullah Canakci ; Boyou Zhou ; Schuyler Eldridge ; Ajay Joshi ; Manuel Egele

There has been a resurgent trend in the industry to enforce a variety of security policies in hardware. The current trend for developing dedicated hardware security extensions is an imperfect, lengthy, and costly process. In contrast to this trend, a flexible hardware monitor can efficiently enforce and enhance a variety of security policies as security threats evolve. Existing hardware monitors typically suffer from one (or more) of the following drawbacks: a restricted set of monitoring actions, considerable performance and power overheads, or an invasive design. In this paper, we propose a minimally-invasive and efficient implementation of a Programmable Hardware Monitor (PHMon) with expressive monitoring rules and flexible fine-grained actions. PHMon can enforce a variety of security policies and can also assist with detecting software bugs and security vulnerabilities. Our prototype of PHMon on an FPGA includes the hardware monitor and its interface with a RISC-V Rocket processor as well as a complete Linux software stack. We demonstrate the versatility of PHMon and its ease of adoption through four different use cases: a shadow stack, a hardware-accelerated fuzzing engine, an information leak prevention mechanism, and a hardware-accelerated debugger. Our prototype implementation of PHMon incurs 0.9% performance overhead on average, while the hardware-accelerated fuzzing engine improves fuzzing performance on average by 16× over the state-of-the art software-based implementation. Our ASIC implementation of PHMon only incurs a 5% power overhead and a 13.5% area overhead.

#5 Interpretable Deep Learning under Fire [PDF1] [Copy] [Kimi1] [REL]

Authors: Xinyang Zhang ; Ningfei Wang ; Hua Shen ; Shouling Ji ; Xiapu Luo ; Ting Wang

Providing explanations for deep neural network (DNN) models is crucial for their use in security-sensitive domains. A plethora of interpretation models have been proposed to help users understand the inner workings of DNNs: how does a DNN arrive at a specific decision for a given input? The improved interpretability is believed to offer a sense of security by involving human in the decision-making process. Yet, due to its data-driven nature, the interpretability itself is potentially susceptible to malicious manipulations, about which little is known thus far. Here we bridge this gap by conducting the first systematic study on the security of interpretable deep learning systems (IDLSes). We show that existing IDLSes are highly vulnerable to adversarial manipulations. Specifically, we present ADV2, a new class of attacks that generate adversarial inputs not only misleading target DNNs but also deceiving their coupled interpretation models. Through empirical evaluation against four major types of IDLSes on benchmark datasets and in security-critical applications (e.g., skin cancer diagnosis), we demonstrate that with ADV2 the adversary is able to arbitrarily designate an input's prediction and interpretation. Further, with both analytical and empirical evidence, we identify the prediction-interpretation gap as one root cause of this vulnerability -- a DNN and its interpretation model are often misaligned, resulting in the possibility of exploiting both models simultaneously. Finally, we explore potential countermeasures against ADV2, including leveraging its low transferability and incorporating it in an adversarial training framework. Our findings shed light on designing and operating IDLSes in a more secure and informative fashion, leading to several promising research directions.

#6 BesFS: A POSIX Filesystem for Enclaves with a Mechanized Safety Proof [PDF] [Copy] [Kimi1] [REL]

Authors: Shweta Shinde ; Shengyi Wang ; Pinghai Yuan ; Aquinas Hobor ; Abhik Roychoudhury ; Prateek Saxena

New trusted computing primitives such as Intel SGX have shown the feasibility of running user-level applications in enclaves on a commodity trusted processor without trusting a large OS. However, the OS can still compromise the integrity of an enclave by tampering with the system call return values. In fact, it has been shown that a subclass of these attacks, called Iago attacks, enables arbitrary logic execution in enclave programs. Existing enclave systems have very large TCB and they implement ad-hoc checks at the system call interface which are hard to verify for completeness. To this end, we present BesFS—the first filesystem interface which provably protects the enclave integrity against a completely malicious OS. We prove 167 lemmas and 2 key theorems in 4625 lines of Coq proof scripts, which directly proves the safety properties of the BesFS specification. BesFS comprises of 15 APIs with compositional safety and is expressive enough to support 31 real applications we test. BesFS integrates into existing SGX-enabled applications with minimal impact to TCB. BesFS can serve as a reference implementation for hand-coded API checks.

#7 Automatic Hot Patch Generation for Android Kernels [PDF] [Copy] [Kimi1] [REL]

Authors: Zhengzi Xu ; Yulong Zhang ; Longri Zheng ; Liangzhao Xia ; Chenfu Bao ; Zhi Wang ; Yang Liu

The rapid growth of the Android ecosystem has led to the fragmentation problem where a wide range of (customized) versions of Android OS exist in the market. This poses a severe security issue as it is very costly for Android vendors to fix vulnerabilities in their customized Android kernels in time. The recent development of the hot patching technique provides an ideal solution to solve this problem since it can be applied to a wide range of Android kernels without interrupting their normal functionalities. However, the current hot patches are written by human experts, which can be time-consuming and error-prone. To this end, we first study the feasibility of automatic patch generation from 373 Android kernel CVEs ranging from 2012 to 2016. Then, we develop an automatic hot patch generation tool, named VULMET, which produces semantic preserving hot patches by learning from the official patches. The key idea of VULMET is to use the weakest precondition reasoning to transform the changes made by the official patches into the hot patch constraints. The experiments have shown that VULMET can generate correct hot patches for 55 real-world Android kernel CVEs. The hot patches do not affect the robustness of the kernels and have low performance overhead.

#8 Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures [PDF1] [Copy] [Kimi1] [REL]

Authors: Mengjia Yan ; Christopher W. Fletcher ; Josep Torrellas

Deep Neural Networks (DNNs) are fast becoming ubiquitous for their ability to attain good accuracy in various machine learning tasks. A DNN’s architecture (i.e., its hyperparameters) broadly determines the DNN’s accuracy and performance, and is often confidential. Attacking a DNN in the cloud to obtain its architecture can potentially provide major commercial value. Further, attaining a DNN’s architecture facilitates other existing DNN attacks. This paper presents Cache Telepathy: an efficient mechanism to help obtain a DNN’s architecture using the cache side channel. The attack is based on the insight that DNN inference relies heavily on tiled GEMM (Generalized Matrix Multiply), and that DNN architecture parameters determine the number of GEMM calls and the dimensions of the matrices used in the GEMM functions. Such information can be leaked through the cache side channel. This paper uses Prime+Probe and Flush+Reload to attack the VGG and ResNet DNNs running OpenBLAS and Intel MKL libraries. Our attack is effective in helping obtain the DNN architectures by very substantially reducing the search space of target DNN architectures. For example, when attacking the OpenBLAS library, for the different layers in VGG-16, it reduces the search space from more than 5.4×1012 architectures to just 16; for the different modules in ResNet-50, it reduces the search space from more than 6×1046 architectures to only 512.

#9 HybCache: Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments [PDF] [Copy] [Kimi1] [REL]

Authors: Ghada Dessouky ; Tommaso Frassetto ; Ahmad-Reza Sadeghi

Modern multi-core processors share cache resources for maximum cache utilization and performance gains. However, this leaves the cache vulnerable to side-channel attacks, where inherent timing differences in shared cache behavior are exploited to infer information on the victim’s execution patterns, ultimately leaking private information such as a secret key. The root cause for these attacks is mutually distrusting processes sharing the cache entries and accessing them in a deterministic and consistent manner. Various defenses against cache side-channel attacks have been proposed. However, they suffer from serious shortcomings: they either degrade performance significantly, impose impractical restrictions, or can only defeat certain classes of these attacks. More importantly, they assume that side-channel-resilient caches are required for the entire execution workload and do not allow the possibility to selectively enable the mitigation only for the security-critical portion of the workload. We present a generic mechanism for a flexible and soft partitioning of set-associative caches and propose a hybrid cache architecture, called HybCache. HybCache can be configured to selectively apply side-channel-resilient cache behavior only for isolated execution domains, while providing the non-isolated execution with conventional cache behavior, capacity and performance. An isolation domain can include one or more processes, specific portions of code, or a Trusted Execution Environment (e.g., SGX or TrustZone). We show that, with minimal hardware modifications and kernel support, HybCache can provide side-channel-resilient cache only for isolated execution with a performance overhead of 3.5–5%, while incurring no performance overhead for the remaining execution workload. We provide a simulator-based and hardware implementation of HybCache to evaluate the performance and area overheads, and show how HybCache mitigates typical access-based and contention-based cache attacks

#10 GREYONE: Data Flow Sensitive Fuzzing [PDF] [Copy] [Kimi1] [REL]

Authors: Shuitao Gan ; Chao Zhang ; Peng Chen ; Bodong Zhao ; Xiaojun Qin ; Dong Wu ; Zuoning Chen

Data flow analysis (e.g., dynamic taint analysis) has proven to be useful for guiding fuzzers to explore hard-to-reach code and find vulnerabilities. However, traditional taint analysis is labor-intensive, inaccurate and slow, affecting the fuzzing efficiency. Apart from taint, few data flow features are utilized. In this paper, we proposed a data flow sensitive fuzzing solution GREYONE. We first utilize the classic feature taint to guide fuzzing. A lightweight and sound fuzzing-driven taint inference (FTI) is adopted to infer taint of variables, by monitoring their value changes while mutating input bytes during fuzzing. With the taint, we propose a novel input prioritization model to determine which branch to explore, which bytes to mutate and how to mutate. Further, we use another data flow feature constraint conformance, i.e., distance of tainted variables to values expected in untouched branches, to tune the evolution direction of fuzzing. We implemented a prototype of GREYONE and evaluated it on the LAVA data set and 19 real world programs. The results showed that it outperforms various state-of-the-art fuzzers in terms of both code coverage and vulnerability discovery. In the LAVA data set, GREYONE found all listed bugs and 336 more unlisted. In real world programs, GREYONE on average found 2.12X unique program paths and 3.09X unique bugs than state-of-the-art evolutionary fuzzers, including AFL, VUzzer, CollAFL, Angora and Honggfuzz, Moreover, GREYONE on average found 1.2X unique program paths and 1.52X unique bugs than a state-of-the-art symbolic exeuction assisted fuzzer QSYM. In total, it found 105 new security bugs, of which 41 are confirmed by CVE.

#11 TPM-FAIL: TPM meets Timing and Lattice Attacks [PDF] [Copy] [Kimi2] [REL]

Authors: Daniel Moghimi ; Berk Sunar ; Thomas Eisenbarth ; Nadia Heninger

Trusted Platform Module (TPM) serves as a hardware-based root of trust that protects cryptographic keys from privileged system and physical adversaries. In this work, we perform a black-box timing analysis of TPM 2.0 devices deployed on commodity computers. Our analysis reveals that some of these devices feature secret-dependent execution times during signature generation based on elliptic curves. In particular, we discovered timing leakage on an Intel firmware-based TPM as well as a hardware TPM. We show how this information allows an attacker to apply lattice techniques to recover 256-bit private keys for ECDSA and ECSchnorr signatures. On Intel fTPM, our key recovery succeeds after about 1,300 observations and in less than two minutes. Similarly, we extract the private ECDSA key from a hardware TPM manufactured by STMicroelectronics, which is certified at Common Criteria (CC) EAL 4+, after fewer than 40,000 observations. We further highlight the impact of these vulnerabilities by demonstrating a remote attack against a StrongSwan IPsec VPN that uses a TPM to generate the digital signatures for authentication. In this attack, the remote client recovers the server’s private authentication key by timing only 45,000 authentication handshakes via a network connection. The vulnerabilities we have uncovered emphasize the difficulty of correctly implementing known constant-time techniques, and show the importance of evolutionary testing and transparent evaluation of cryptographic implementations. Even certified devices that claim resistance against attacks require additional scrutiny by the community and industry, as we learn more about these attacks.

#12 P2IM: Scalable and Hardware-independent Firmware Testing via Automatic Peripheral Interface Modeling [PDF] [Copy] [Kimi1] [REL]

Authors: Bo Feng ; Alejandro Mera ; Long Lu

Dynamic testing or fuzzing of embedded firmware is severely limited by hardware-dependence and poor scalability, partly contributing to the widespread vulnerable IoT devices. We propose a software framework that continuously executes a given firmware binary while channeling inputs from an off-the-shelf fuzzer, enabling hardware-independent and scalable firmware testing. Our framework, using a novel technique called P2IM, abstracts diverse peripherals and handles firmware I/O on the fly based on automatically generated models. P2IM is oblivious to peripheral designs and generic to firmware implementations, and therefore, applicable to a wide range of embedded devices. We evaluated our framework using 70 sample firmware and 10 firmware from real devices, including a drone, a robot, and a PLC. It successfully executed 79% of the sample firmware without any manual assistance. We also performed a limited fuzzing test on the real firmware, which unveiled 7 unique unknown bugs.

#13 Understanding security mistakes developers make: Qualitative analysis from Build It, Break It, Fix It [PDF1] [Copy] [Kimi1] [REL]

Authors: Daniel Votipka ; Kelsey R. Fulton ; James Parker ; Matthew Hou ; Michelle L. Mazurek ; Michael Hicks

Secure software development is a challenging task requiring consideration of many possible threats and mitigations. This paper investigates how and why programmers, despite a baseline of security experience, make security-relevant errors. To do this, we conducted an in-depth analysis of 94 submissions to a secure-programming contest designed to mimic real-world constraints: correctness, performance, and security. In addition to writing secure code, participants were asked to search for vulnerabilities in other teams’ programs; in total, teams submitted 866 exploits against the submissions we considered. Over an intensive six-month period, we used iterative open coding to manually, but systematically, characterize each submitted project and vulnerability (including vulnerabilities we identified ourselves). We labeled vulnerabilities by type, attacker control allowed, and ease of exploitation, and projects according to security implementation strategy. Several patterns emerged. For example, simple mistakes were least common: only 21% of projects introduced such an error. Conversely, vulnerabilities arising from a misunderstanding of security concepts were significantly more common, appearing in 78% of projects. Our results have implications for improving secure-programming APIs, API documentation, vulnerability-finding tools, and security education.

#14 Montage: A Neural Network Language Model-Guided JavaScript Engine Fuzzer [PDF] [Copy] [Kimi2] [REL]

Authors: Suyoung Lee ; HyungSeok Han ; Sang Kil Cha ; Sooel Son

JavaScript (JS) engine vulnerabilities pose significant security threats affecting billions of web browsers. While fuzzing is a prevalent technique for finding such vulnerabilities, there have been few studies that leverage the recent advances in neural network language models (NNLMs). In this paper, we present Montage, the first NNLM-guided fuzzer for finding JS engine vulnerabilities. The key aspect of our technique is to transform a JS abstract syntax tree (AST) into a sequence of AST subtrees that can directly train prevailing NNLMs. We demonstrate that Montage is capable of generating valid JS tests, and show that it outperforms previous studies in terms of finding vulnerabilities. Montage found 37 real-world bugs, including three CVEs, in the latest JS engines, demonstrating its efficacy in finding JS engine bugs.

#15 Big Numbers - Big Troubles: Systematically Analyzing Nonce Leakage in (EC)DSA Implementations [PDF] [Copy] [Kimi1] [REL]

Authors: Samuel Weiser ; David Schrammel ; Lukas Bodner ; Raphael Spreitzer

Side-channel attacks exploiting (EC)DSA nonce leakage easily lead to full key recovery. Although (EC)DSA implementations have already been hardened against side-channel leakage using the constant-time paradigm, the long-standing cat-and-mouse-game of attacks and patches continues. In particular, current code review is prone to miss less obvious side channels hidden deeply in the call stack. To solve this problem, a systematic study of nonce leakage is necessary. We present a systematic analysis of nonce leakage in cryptographic implementations. In particular, we expand DATA, an open-source side-channel analysis framework, to detect nonce leakage. Our analysis identified multiple unknown nonce leakage vulnerabilities across all essential computation steps involving nonces. Among others, we uncover inherent problems in Bignumber implementations that break claimed constant-time guarantees of (EC)DSA implementations if secrets are close to a word boundary. We found that lazy resizing of Bignumbers in OpenSSL and LibreSSL yields a highly accurate and easily exploitable side channel, which has been acknowledged with two CVEs. Surprisingly, we also found a tiny but expressive leakage in the constant-time scalar multiplication of OpenSSL and BoringSSL. Moreover, in the process of reporting and patching, we identified newly introduced leakage with the support of our tool, thus preventing another attack-patch cycle. We open-source our tool, together with an intuitive graphical user interface we developed.

#16 (Mostly) Exitless VM Protection from Untrusted Hypervisor through Disaggregated Nested Virtualization [PDF] [Copy] [Kimi1] [REL]

Authors: Zeyu Mi ; Dingji Li ; Haibo Chen ; Binyu Zang ; Haibing Guan

Today’s cloud tenants are facing severe security threats such as compromised hypervisors, which forces a strong adversary model where the hypervisor should be excluded out of the TCB. Previous approaches to shielding guest VMs either suffer from insufficient protection or result in suboptimal performance due to frequent VM exits (especially for I/O operations). This paper presents CloudVisor-D, an efficient nested hypervisor design that embraces both strong protection and high performance. The core idea of CloudVisor-D is to disaggregate the nested hypervisor by separating major protection logics into a protected Guardian-VM alongside each guest VM. The Guardian-VM is securely isolated and protected by the nested hypervisor and provides secure services for most privileged operations like hypercalls, EPT violations and I/O operations from guest VMs. By leveraging recent hardware features, most privileged operations from a guest VM require no VM exits to the nested hypervisor, which are the major sources of performance slowdown in prior designs. We have implemented CloudVisor-D on a commercially available machine with these recent hardware features. Experimental evaluation shows that CloudVisor-D incurs negligible performance overhead even for I/O intensive benchmarks and in some cases outperforms a vanilla hypervisor due to the reduced number of VM exits.

#17 Stealthy Tracking of Autonomous Vehicles with Cache Side Channels [PDF] [Copy] [Kimi1] [REL]

Authors: Mulong Luo ; Andrew C. Myers ; G. Edward Suh

Autonomous vehicles are becoming increasingly popular, but their reliance on computer systems to sense and operate in the physical world introduces new security risks. In this paper, we show that the location privacy of an autonomous vehicle may be compromised by software side-channel attacks if localization software shares a hardware platform with an attack program. In particular, we demonstrate that a cache side-channel attack can be used to infer the route or the location of a vehicle that runs the adaptive Monte-Carlo localization (AMCL) algorithm. The main contributions of the paper are as follows. First, we show that adaptive behaviors of perception and control algorithms may introduce new side-channel vulnerabilities that reveal the physical properties of a vehicle or its environment. Second, we introduce statistical learning models that infer the AMCL algorithm's state from cache access patterns and predict the route or the location of a vehicle from the trace of the AMCL state. Third, we implement and demonstrate the attack on a realistic software stack using real-world sensor data recorded on city roads. Our findings suggest that autonomous driving software needs strong timing-channel protection for location privacy.

#18 An Off-Chip Attack on Hardware Enclaves via the Memory Bus [PDF] [Copy] [Kimi1] [REL]

Authors: Dayeol Lee ; Dongha Jung ; Ian T. Fang ; Chia-Che Tsai ; Raluca Ada Popa

This paper shows how an attacker can break the confidentiality of a hardware enclave with Membuster, an off-chip attack based on snooping the memory bus. An attacker with physical access can observe an unencrypted address bus and extract fine-grained memory access patterns of the victim. Membuster is qualitatively different from prior on-chip attacks to enclaves and is more difficult to thwart. We highlight several challenges for Membuster. First, DRAM requests are only visible on the memory bus at last-level cache misses. Second, the attack needs to incur minimal interference or overhead to the victim to prevent the detection of the attack. Lastly, the attacker needs to reverse-engineer the translation between virtual, physical, and DRAM addresses to perform a robust attack. We introduce three techniques, critical page whitelisting, cache squeezing, and oracle-based fuzzy matching algorithm to increase cache misses for memory accesses that are useful for the attack, with no detectable interference to the victim, and to convert memory accesses to sensitive data. We demonstrate Membuster on an Intel SGX CPU to leak confidential data from two applications: Hunspell and Memcached. We show that a single uninterrupted run of the victim can leak most of the sensitive data with high accuracy.

#19 Void: A fast and light voice liveness detection system [PDF1] [Copy] [Kimi1] [REL]

Authors: Muhammad Ejaz Ahmed ; Il-Youp Kwak ; Jun Ho Huh ; Iljoo Kim ; Taekkyung Oh ; Hyoungshick Kim

Due to the open nature of voice assistants' input channels, adversaries could easily record people's use of voice commands, and replay them to spoof voice assistants. To mitigate such spoofing attacks, we present a highly efficient voice liveness detection solution called "Void." Void detects voice spoofing attacks using the differences in spectral power between live-human voices and voices replayed through speakers. In contrast to existing approaches that use multiple deep learning models, and thousands of features, Void uses a single classification model with just 97 features. We used two datasets to evaluate its performance: (1) 255,173 voice samples generated with 120 participants, 15 playback devices and 12 recording devices, and (2) 18,030 publicly available voice samples generated with 42 participants, 26 playback devices and 25 recording devices. Void achieves equal error rate of 0.3% and 11.6% in detecting voice replay attacks for each dataset, respectively. Compared to a state of the art, deep learning-based solution that achieves 7.4% error rate in that public dataset, Void uses 153 times less memory and is about 8 times faster in detection. When combined with a Gaussian Mixture Model that uses Mel-frequency cepstral coefficients (MFCC) as classification features—MFCC is already being extracted and used as the main feature in speech recognition services—Void achieves 8.7% error rate on the public dataset. Moreover, Void is resilient against hidden voice command, inaudible voice command, voice synthesis, equalization manipulation attacks, and combining replay attacks with live-human voices achieving about 99.7%, 100%, 90.2%, 86.3%, and 98.2% detection rates for those attacks, respectively.

#20 SmartVerif: Push the Limit of Automation Capability of Verifying Security Protocols by Dynamic Strategies [PDF1] [Copy] [Kimi1] [REL]

Authors: Yan Xiong ; Cheng Su ; Wenchao Huang ; Fuyou Miao ; Wansen Wang ; Hengyi Ouyang

Current formal approaches have been successfully used to find design flaws in many security protocols. However, it is still challenging to automatically analyze protocols due to their large or infinite state spaces. In this paper, we propose SmartVerif, a novel and general framework that pushes the limit of automation capability of state-of-the-art verification approaches. The primary technical contribution is the dynamic strategy inside SmartVerif, which can be used to smartly search proof paths. Different from the non-trivial and error-prone design of existing static strategies, the design of our dynamic strategy is simple and flexible: it can automatically optimize itself according to the security protocols without any human intervention. With the optimized strategy, SmartVerif can localize and prove supporting lemmata, which leads to higher probability of success in verification. The insight of designing the strategy is that the node representing a supporting lemma is on an incorrect proof path with lower probability, when a random strategy is given. Hence, we implement the strategy around the insight by introducing a reinforcement learning algorithm. We also propose several methods to deal with other technical problems in implementing SmartVerif. Experimental results show that SmartVerif can automatically verify all security protocols studied in this paper. The case studies also validate the efficiency of our dynamic strategy.

#21 An Observational Investigation of Reverse Engineers’ Processes [PDF] [Copy] [Kimi1] [REL]

Authors: Daniel Votipka ; Seth Rabin ; Kristopher Micinski ; Jeffrey S. Foster ; Michelle L. Mazurek

Reverse engineering is a complex process essential to software-security tasks such as vulnerability discovery and malware analysis. Significant research and engineering effort has gone into developing tools to support reverse engineers. However, little work has been done to understand the way reverse engineers think when analyzing programs, leaving tool developers to make interface design decisions based only on intuition. This paper takes a first step toward a better understanding of reverse engineers’ processes, with the goal of producing insights for improving interaction design for reverse engineering tools. We present the results of a semi-structured, observational interview study of reverse engineers (N=16). Each observation investigated the questions reverse engineers ask as they probe a program, how they answer these questions, and the decisions they make throughout the reverse engineering process. From the interview responses, we distill a model of the reverse engineering process, divided into three phases: overview, sub-component scanning, and focused experimentation. Each analysis phase’s results feed the next as reverse engineers’ mental representations become more concrete. We find that reverse engineers typically use static methods in the first two phases, but dynamic methods in the final phase, with experience playing large, but varying, roles in each phase. Based on these results, we provide five interaction design guidelines for reverse engineering tools.

#22 Cached and Confused: Web Cache Deception in the Wild [PDF] [Copy] [Kimi1] [REL]

Authors: Seyed Ali Mirheidari ; Sajjad Arshad ; Kaan Onarlioglu ; Bruno Crispo ; Engin Kirda ; William Robertson

Web cache deception (WCD) is an attack proposed in 2017, where an attacker tricks a caching proxy into erroneously storing private information transmitted over the Internet and subsequently gains unauthorized access to that cached data. Due to the widespread use of web caches and, in particular, the use of massive networks of caching proxies deployed by content distribution network (CDN) providers as a critical component of the Internet, WCD puts a substantial population of Internet users at risk. We present the first large-scale study that quantifies the prevalence of WCD in 340 high-profile sites among the Alexa Top 5K. Our analysis reveals WCD vulnerabilities that leak private user data as well as secret authentication and authorization tokens that can be leveraged by an attacker to mount damaging web application attacks. Furthermore, we explore WCD in a scientific framework as an instance of the path confusion class of attacks, and demonstrate that variations on the path confusion technique used make it possible to exploit sites that are otherwise not impacted by the original attack. Our findings show that many popular sites remain vulnerable two years after the public disclosure of WCD. Our empirical experiments with popular CDN providers underline the fact that web caches are not plug & play technologies. In order to mitigate WCD, site operators must adopt a holistic view of their web infrastructure and carefully configure cache settings appropriate for their applications.

#23 Security Analysis of Unified Payments Interface and Payment Apps in India [PDF] [Copy] [Kimi1] [REL]

Authors: Renuka Kumar ; Sreesh Kishore ; Hao Lu ; Atul Prakash

Since 2016, with a strong push from the Government of India, smartphone-based payment apps have become mainstream, with over $50 billion transacted through these apps in 2018. Many of these apps use a common infrastructure introduced by the Indian government, called the Unified Payments Interface (UPI), but there has been no security analysis of this critical piece of infrastructure that supports money transfers. This paper uses a principled methodology to do a detailed security analysis of the UPI protocol by reverse-engineering the design of this protocol through seven popular UPI apps. We discover previously-unreported multi-factor authentication design-level flaws in the UPI 1.0 specification that can lead to significant attacks when combined with an installed attacker-controlled application. In an extreme version of the attack, the flaws could allow a victim's bank account to be linked and emptied, even if a victim had never used a UPI app. The potential attacks were scalable and could be done remotely. We discuss our methodology and detail how we overcame challenges in reverse-engineering this unpublished application layer protocol, including that all UPI apps undergo a rigorous security review in India and are designed to resist analysis. The work resulted in several CVEs, and a key attack vector that we reported was later addressed in UPI 2.0.

#24 ShadowMove: A Stealthy Lateral Movement Strategy [PDF] [Copy] [Kimi1] [REL]

Authors: Amirreza Niakanlahiji ; Jinpeng Wei ; Md Rabbi Alam ; Qingyang Wang ; Bei-Tseng Chu

Advanced Persistence Threat (APT) attacks use various strategies and techniques to move laterally within an enterprise environment; however, the existing strategies and techniques have limitations such as requiring elevated permissions, creating new connections, performing new authentications, or requiring process injections. Based on these characteristics, many host and network-based solutions have been proposed to prevent or detect such lateral movement attempts. In this paper, we present a novel stealthy lateral movement strategy, ShadowMove, in which only established connections between systems in an enterprise network are misused for lateral movements. It has a set of unique features such as requiring no elevated privilege, no new connection, no extra authentication, and no process injection, which makes it stealthy against state-of-the-art detection mechanisms. ShadowMove is enabled by a novel socket duplication approach that allows a malicious process to silently abuse TCP connections established by benign processes. We design and implement ShadowMove for current Windows and Linux operating systems. To validate the feasibility of ShadowMove, we build several prototypes that successfully hijack three kinds of enterprise protocols, FTP, Microsoft SQL, and Window Remote Management, to perform lateral movement actions such as copying malware to the next target machine and launching malware on the target machine. We also confirm that our prototypes cannot be detected by existing host and network-based solutions, such as five top-notch anti-virus products (McAfee, Norton, Webroot, Bitdefender, and Windows Defender), four IDSes (Snort, OSSEC, Osquery, and Wazuh), and two Endpoint Detection and Response systems (CrowdStrike Falcon Prevent and Cisco AMP).

#25 Human Distinguishable Visual Key Fingerprints [PDF] [Copy] [Kimi1] [REL]

Authors: Mozhgan Azimpourkivi ; Umut Topkara ; Bogdan Carbunar

Visual fingerprints are used in human verification of identities to improve security against impersonation attacks. The verification requires the user to confirm that the visual fingerprint image derived from the trusted source is the same as the one derived from the unknown source. We introduce CEAL, a novel mechanism to build generators for visual fingerprint representations of arbitrary public strings. CEAL stands out from existing approaches in three significant aspects: (1) eliminates the need for hand curated image generation rules by learning a generator model that imitates the style and domain of fingerprint images from a large collection of sample images, hence enabling easy customizability, (2) operates within limits of the visual discriminative ability of human perception, such that the learned fingerprint image generator avoids mapping distinct keys to images which are not distinguishable by humans, and (3) the resulting model deterministically generates realistic fingerprint images from an input vector, where the vector components are designated to control visual properties which are either readily perceptible to a human eye, or imperceptible, yet necessary for accurately modeling the target image domain. Unlike existing visual fingerprint generators, CEAL factors in the limits of human perception, and pushes the key payload capacity of the images toward the limits of its generative model: We have built a generative network for nature landscape images which can reliably encode 123 bits of entropy in the fingerprint. We label 3,996 image pairs by 931 participants. In experiments with 402 million attack image pairs, we found that pre-image attacks performed by adversaries equipped with the human perception discriminators that we build, achieve a success rate against CEAL that is at most 0.0002%. The CEAL generator model is small (67MB) and efficient (2.3s to generate an image fingerprint on a laptop).